ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable selection in Functional Additive Regression Models

353   0   0.0 ( 0 )
 نشر من قبل Manuel Oviedo de la Fuente
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model based on the use of distance correlation proposed by cite{Szekely2007}. For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, ...) of each variable. The algorithm has shown quite promising results when applied to simulations and real data sets.



قيم البحث

اقرأ أيضاً

97 - Nadja Klein , Jorge Mateu 2021
Statistical techniques used in air pollution modelling usually lack the possibility to understand which predictors affect air pollution in which functional form; and are not able to regress on exceedances over certain thresholds imposed by authoritie s directly. The latter naturally induce conditional quantiles and reflect the seriousness of particular events. In the present paper we focus on this important aspect by developing quantile regression models further. We propose a general Bayesian effect selection approach for additive quantile regression within a highly interpretable framework. We place separate normal beta prime spike and slab priors on the scalar importance parameters of effect parts and implement a fast Gibbs sampling scheme. Specifically, it enables to study quantile-specific covariate effects, allows these covariates to be of general functional form using additive predictors, and facilitates the analysts decision whether an effect should be included linearly, non-linearly or not at all in the quantiles of interest. In a detailed analysis on air pollution data in Madrid (Spain) we find the added value of modelling extreme nitrogen dioxide (NO2) concentrations and how thresholds are driven differently by several climatological variables and traffic as a spatial proxy. Our results underpin the need of enhanced statistical models to support short-term decisions and enable local authorities to mitigate or even prevent exceedances of NO2 concentration limits.
We discuss Bayesian model uncertainty analysis and forecasting in sequential dynamic modeling of multivariate time series. The perspective is that of a decision-maker with a specific forecasting objective that guides thinking about relevant models. B ased on formal Bayesian decision-theoretic reasoning, we develop a time-adaptive approach to exploring, weighting, combining and selecting models that differ in terms of predictive variables included. The adaptivity allows for changes in the sets of favored models over time, and is guided by the specific forecasting goals. A synthetic example illustrates how decision-guided variable selection differs from traditional Bayesian model uncertainty analysis and standard model averaging. An applied study in one motivating application of long-term macroeconomic forecasting highlights the utility of the new approach in terms of improving predictions as well as its ability to identify and interpret different sets of relevant models over time with respect to specific, defined forecasting goals.
We consider regression in which one predicts a response $Y$ with a set of predictors $X$ across different experiments or environments. This is a common setup in many data-driven scientific fields and we argue that statistical inference can benefit fr om an analysis that takes into account the distributional changes across environments. In particular, it is useful to distinguish between stable and unstable predictors, i.e., predictors which have a fixed or a changing functional dependence on the response, respectively. We introduce stabilized regression which explicitly enforces stability and thus improves generalization performance to previously unseen environments. Our work is motivated by an application in systems biology. Using multiomic data, we demonstrate how hypothesis generation about gene function can benefit from stabilized regression. We believe that a similar line of arguments for exploiting heterogeneity in data can be powerful for many other applications as well. We draw a theoretical connection between multi-environment regression and causal models, which allows to graphically characterize stable versus unstable functional dependence on the response. Formally, we introduce the notion of a stable blanket which is a subset of the predictors that lies between the direct causal predictors and the Markov blanket. We prove that this set is optimal in the sense that a regression based on these predictors minimizes the mean squared prediction error given that the resulting regression generalizes to unseen new environments.
We propose a novel spike and slab prior specification with scaled beta prime marginals for the importance parameters of regression coefficients to allow for general effect selection within the class of structured additive distributional regression. T his enables us to model effects on all distributional parameters for arbitrary parametric distributions, and to consider various effect types such as non-linear or spatial effects as well as hierarchical regression structures. Our spike and slab prior relies on a parameter expansion that separates blocks of regression coefficients into overall scalar importance parameters and vectors of standardised coefficients. Hence, we can work with a scalar quantity for effect selection instead of a possibly high-dimensional effect vector, which yields improved shrinkage and sampling performance compared to the classical normal-inverse-gamma prior. We investigate the propriety of the posterior, show that the prior yields desirable shrinkage properties, propose a way of eliciting prior parameters and provide efficient Markov Chain Monte Carlo sampling. Using both simulated and three large-scale data sets, we show that our approach is applicable for data with a potentially large number of covariates, multilevel predictors accounting for hierarchically nested data and non-standard response distributions, such as bivariate normal or zero-inflated Poisson.
The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functiona l linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا