ﻻ يوجد ملخص باللغة العربية
We consider regression in which one predicts a response $Y$ with a set of predictors $X$ across different experiments or environments. This is a common setup in many data-driven scientific fields and we argue that statistical inference can benefit from an analysis that takes into account the distributional changes across environments. In particular, it is useful to distinguish between stable and unstable predictors, i.e., predictors which have a fixed or a changing functional dependence on the response, respectively. We introduce stabilized regression which explicitly enforces stability and thus improves generalization performance to previously unseen environments. Our work is motivated by an application in systems biology. Using multiomic data, we demonstrate how hypothesis generation about gene function can benefit from stabilized regression. We believe that a similar line of arguments for exploiting heterogeneity in data can be powerful for many other applications as well. We draw a theoretical connection between multi-environment regression and causal models, which allows to graphically characterize stable versus unstable functional dependence on the response. Formally, we introduce the notion of a stable blanket which is a subset of the predictors that lies between the direct causal predictors and the Markov blanket. We prove that this set is optimal in the sense that a regression based on these predictors minimizes the mean squared prediction error given that the resulting regression generalizes to unseen new environments.
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and
The curse of dimensionality is a recognized challenge in nonparametric estimation. This paper develops a new L0-norm regularization approach to the convex quantile and expectile regressions for subset variable selection. We show how to use mixed inte
The joint modeling of mean and dispersion (JMMD) provides an efficient method to obtain useful models for the mean and dispersion, especially in problems of robust design experiments. However, in the literature on JMMD there are few works dedicated t
We discuss Bayesian model uncertainty analysis and forecasting in sequential dynamic modeling of multivariate time series. The perspective is that of a decision-maker with a specific forecasting objective that guides thinking about relevant models. B
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coeffic