ﻻ يوجد ملخص باللغة العربية
The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functional linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is small relative to the sample size.
We study the problem of high-dimensional variable selection via some two-step procedures. First we show that given some good initial estimator which is $ell_{infty}$-consistent but not necessarily variable selection consistent, we can apply the nonne
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and
We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predicto
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran