ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent Variable Selection for Functional Regression Models

236   0   0.0 ( 0 )
 نشر من قبل Ronaldo Dias
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functional linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.



قيم البحث

اقرأ أيضاً

We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is small relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.
We study the problem of high-dimensional variable selection via some two-step procedures. First we show that given some good initial estimator which is $ell_{infty}$-consistent but not necessarily variable selection consistent, we can apply the nonne gative Garrote, adaptive Lasso or hard-thresholding procedure to obtain a final estimator that is both estimation and variable selection consistent. Unlike the Lasso, our results do not require the irrepresentable condition which could fail easily even for moderate $p_n$ (Zhao and Yu, 2007) and it also allows $p_n$ to grow almost as fast as $exp(n)$ (for hard-thresholding there is no restriction on $p_n$). We also study the conditions under which the Ridge regression can be used as an initial estimator. We show that under a relaxed identifiable condition, the Ridge estimator is $ell_{infty}$-consistent. Such a condition is usually satisfied when $p_nle n$ and does not require the partial orthogonality between relevant and irrelevant covariates which is needed for the univariate regression in (Huang et al., 2008). Our numerical studies show that when using the Lasso or Ridge as initial estimator, the two-step procedures have a higher sparsity recovery rate than the Lasso or adaptive Lasso with univariate regression used in (Huang et al., 2008).
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model based on the use of distance correlation proposed by cite{Szekely2007}. For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, ...) of each variable. The algorithm has shown quite promising results when applied to simulations and real data sets.
149 - Emilie Devijver 2015
We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predicto r selection and rank reduction to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence is introduced. We apply this result to a specific procedure, introduced in [11], where the relevant predictors are selected by the Group-Lasso.
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran ge of methodologies, including statistical smoothing and deconvolution. The standard approach to estimating the slope function is based explicitly on functional principal components analysis and, consequently, on spectral decomposition in terms of eigenvalues and eigenfunctions. We discuss this approach in detail and show that in certain circumstances, optimal convergence rates are achieved by the PCA technique. An alternative approach based on quadratic regularisation is suggested and shown to have advantages from some points of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا