ﻻ يوجد ملخص باللغة العربية
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this
The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $Omega subset B(G$), let $d_{O
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
Let $mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $mathcal{S}$ is called {sl idempotent-sum free} provided that no idempotent of $mathcal{S}$ can