ﻻ يوجد ملخص باللغة العربية
Let $vec{w} = (w_1,dots, w_n) in mathbb{R}^{n}$. We show that for any $n^{-2}leepsilonle 1$, if [#{vec{xi} in {0,1}^{n}: langle vec{xi}, vec{w} rangle = tau} ge 2^{-epsilon n}cdot 2^{n}] for some $tau in mathbb{R}$, then [#{langle vec{xi}, vec{w} rangle : vec{xi} in {0,1}^{n}} le 2^{O(sqrt{epsilon}n)}.] This exponentially improves the $epsilon$ dependence in a recent result of Nederlof, Pawlewicz, Swennenhuis, and Wk{e}grzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.
We develop novel techniques which allow us to prove a diverse range of results relating to subset sums and complete sequences of positive integers, including solutions to several longstanding open problems. These include: solutions to the three probl
We show that in any two-coloring of the positive integers there is a color for which the set of positive integers that can be represented as a sum of distinct elements with this color has upper logarithmic density at least $(2+sqrt{3})/4$ and this is
We settle the existence of certain anti-magic cubes using combinatorial block designs and graph decompositions to align a handful of small examples.
Let $G$ be an additive abelian group and $Ssubset G$ a subset. Let $Sigma(S)$ denote the set of group elements which can be expressed as a sum of a nonempty subset of $S$. We say $S$ is zero-sum free if $0 otin Sigma(S)$. It was conjectured by R.B.~
Let $f(n,r)$ denote the maximum number of colourings of $A subseteq lbrace 1,ldots,nrbrace$ with $r$ colours such that each colour class is sum-free. Here, a sum is a subset $lbrace x,y,zrbrace$ such that $x+y=z$. We show that $f(n,2) = 2^{lceil n/2r