ﻻ يوجد ملخص باللغة العربية
Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and various special limits are discussed.
Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are no
The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coeffic
Deviations from relativity are tightly constrained by numerous experiments. A class of unmeasured and potentially large violations is presented that can be tested in the laboratory only via weak gravity couplings. Specialized highly sensitive experim
Modified theories of gravity that explicitly break diffeomorphism invariance have been used for over a decade to explore open issues related to quantum gravity, dark energy, and dark matter. At the same time, the Standard-Model Extension (SME) has be
We investigate the initial-boundary value problem for linearized gravitational theory in harmonic coordinates. Rigorous techniques for hyperbolic systems are applied to establish well-posedness for various reductions of the system into a set of six w