ترغب بنشر مسار تعليمي؟ اضغط هنا

Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging

75   0   0.0 ( 0 )
 نشر من قبل Adrien Bourgoin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coefficients performed simultaneously within two sectors of the SME framework using lunar laser ranging observations. We consider the pure gravitational sector and the classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude previous estimations.

قيم البحث

اقرأ أيضاً

We present new constraints on Lorentz symmetry (LS) violations with lunar laser ranging (LLR). Those constraints are derived in the standard-model extension (SME) framework aiming at parameterizing any LS deviations in all sectors of physics. We rest rict ourself to two sectors namely the pure gravitational sector of the minimal SME and the gravity-matter coupling. We describe the adopted method and compare our results to previous analysis based on theoretical grounds. This work constitutes the first direct experimental determination of the SME coefficients using LLR measurements.
89 - A. Bourgoin 2020
The possibility for Lorentz/CPT-breaking, which is motivated by unification theories, can be systematically tested within the standard-model extension framework. In the pure gravity sector, the mass dimension 5 operators produce new Lorentz and CPT-b reaking terms in the 2-body equations of motion that depend on the relative velocity of the bodies. In this Letter, we report new constraints on 15 independent SME coefficients for Lorentz/CPT-violations with mass dimension 5 using lunar laser ranging. We perform a global analysis of lunar ranging data within the SME framework using more than 26,000 normal points between 1969 and 2018. We also perform a jackknife analysis in order to provide realistic estimates of the systematic uncertainties. No deviation from Lorentz/CPT symmetries is reported. In addition, when fitting simultaneously for the 15 canonical SME coefficients for Lorentz/CPT-violations, we improve up to three orders of magnitude previous post-fit constraints from radio pulsars.
We study the impact of the limit on $|dot{G}|/G$ from Lunar Laser Ranging on nonlocal gravity, i.e. on models of the quantum effective action of gravity that include nonlocal terms relevant in the infrared, such as the RR and RT models proposed by ou r group, and the Deser-Woodard (DW) model. We elaborate on the analysis of Barreira et al. [1] and we confirm their findings that (under plausible assumptions such as the absence of strong backreaction from non-linear structures), the RR model is ruled out. We also show that the mechanism of perfect screening for free suggested for the DW model actually does not work and the DW model is also ruled out. In contrast, the RT model passes all phenomenological consistency tests and is still a viable candidate.
Deviations from relativity are tightly constrained by numerous experiments. A class of unmeasured and potentially large violations is presented that can be tested in the laboratory only via weak gravity couplings. Specialized highly sensitive experim ents could achieve measurements of the corresponding effects. A single constraint of 1 x 10^{-11} GeV is extracted on one combination of the 12 possible effects in ordinary matter. Estimates are provided for attainable sensitivities in existing and future experiments.
We present constraints on violations of Lorentz Invariance based on Lunar Laser Ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies, and is currently accurate to a few centimeters (parts in $10^{11}$ of the total distance). By analyzing archival LLR data under the Standard-Model Extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz-violation. We found no evidence for Lorentz violation at the $10^{-6}$ to $10^{-11}$ level in these parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا