ﻻ يوجد ملخص باللغة العربية
We investigate the initial-boundary value problem for linearized gravitational theory in harmonic coordinates. Rigorous techniques for hyperbolic systems are applied to establish well-posedness for various reductions of the system into a set of six wave equations. The results are used to formulate computational algorithms for Cauchy evolution in a 3-dimensional bounded domain. Numerical codes based upon these algorithms are shown to satisfy tests of robust stability for random constraint violating initial data and random boundary data; and shown to give excellent performance for the evolution of typical physical data. The results are obtained for plane boundaries as well as piecewise cubic spherical boundaries cut out of a Cartesian grid.
Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involvin
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply th
Since the entropy of stationary black holes in Horndeski gravity will be modified by the non-minimally coupling scalar field, a significant issue of whether the Wald entropy still obeys the linearized second law of black hole thermodynamics can be pr
Within a first-order framework, we comprehensively examine the role played by boundary conditions in the canonical formulation of a completely general two-dimensional gravity model. Our analysis particularly elucidates the perennial themes of mass an
$f(P)$ gravity is a novel extension of ECG in which the Ricci scalar in the action is replaced by a function of the curvature invariant $P$ which represents the contractions of the Riemann tensor at the cubic order cite{p}. The present work is concen