ترغب بنشر مسار تعليمي؟ اضغط هنا

OPARC: Optimal and Precise Array Response Control Algorithm -- Part I: Fundamentals

168   0   0.0 ( 0 )
 نشر من قبل Xuejing Zhang
 تاريخ النشر 2017
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the problem of how to optimally and precisely control array response levels is addressed. By using the concept of the optimal weight vector from the adaptive array theory and adding virtual interferences one by one, the change rule of the optimal weight vector is found and a new formulation of the weight vector update is thus devised. Then, the issue of how to precisely control the response level of one single direction is investigated. More specifically, we assign a virtual interference to a direction such that the response level can be precisely controlled. Moreover, the parameters, such as, the interference-to-noise ratio (INR), can be figured out according to the desired level. Additionally, the parameter optimization is carried out to obtain the maximal array gain. The resulting scheme is called optimal and precise array response control (OPARC) in this paper. To understand it better, its properties are given, and its comparison with the existing accurate array response control ($ {textrm A}^2textrm{RC} $) algorithm is provided. Finally, simulation results are presented to verify the effectiveness and superiority of the proposed OPARC.



قيم البحث

اقرأ أيضاً

In this paper, the optimal and precise array response control (OPARC) algorithm proposed in Part I of this two paper series is extended from single point to multi-points. Two computationally attractive parameter determination approaches are provided to maximize the array gain under certain constraints. In addition, the applications of the multi-point OPARC algorithm to array signal processing are studied. It is applied to realize array pattern synthesis (including the general array case and the large array case), multi-constraint adaptive beamforming and quiescent pattern control, where an innovative concept of normalized covariance matrix loading (NCL) is proposed. Finally, simulation results are presented to validate the superiority and effectiveness of the multi-point OPARC algorithm.
This paper presents a novel array response control algorithm and its application to array pattern synthesis. The proposed algorithm considers how to flexibly and precisely adjust the array responses at multiple points, on the basis of one given weigh t vector. With the principle of adaptive beamforming, it is shown that the optimal weight vector for array response control can be equivalently obtained with a different manner, in which a linear transformation is conducted on the quiescent weight. This new strategy is utilized to realize multi-point precise array response control from one given weight vector, and it obtains a closed-form solution. A careful analysis shows that the response levels at given points can be independently, flexibly and accurately adjusted by simply varying the parameter vector, and that the uncontrolled region remains almost unchanged. By applying the proposed algorithm, an effective pattern synthesis approach is devised. Simulation results are provided to demonstrate the performance of the proposed algorithm.
60 - Xuejing Zhang , Zishu He , 2018
This paper presents a new array response control scheme named complex-coefficient weight vector orthogonal decomposition ($ textrm{C}^2textrm{-WORD} $) and its application to pattern synthesis. The proposed $ textrm{C}^2textrm{-WORD} $ algorithm is a modified version of the existing WORD approach. We extend WORD by allowing a complex-valued combining coefficient in $ textrm{C}^2textrm{-WORD} $, and find the optimal combining coefficient by maximizing white noise gain (WNG). Our algorithm offers a closed-from expression to precisely control the array response level of a given point starting from an arbitrarily-specified weight vector. In addition, it results less pattern variations on the uncontrolled angles. Elaborate analysis shows that the proposed $ textrm{C}^2textrm{-WORD} $ scheme performs at least as good as the state-of-the-art $textrm{A}^textrm{2}textrm{RC} $ or WORD approach. By applying $ textrm{C}^2textrm{-WORD} $ successively, we present a flexible and effective approach to pattern synthesis. Numerical examples are provided to demonstrate the flexibility and effectiveness of $ textrm{C}^2textrm{-WORD} $ in array response control as well as pattern synthesis.
98 - Xiuhong Wei , Decai Shen , 2021
The reconfigurable intelligent surface (RIS) with low hardware cost and energy consumption has been recognized as a potential technique for future 6G communications to enhance coverage and capacity. To achieve this goal, accurate channel state inform ation (CSI) in RIS assisted wireless communication system is essential for the joint beamforming at the base station (BS) and the RIS. However, channel estimation is challenging, since a large number of passive RIS elements cannot transmit, receive, or process signals. In the first part of this invited paper, we provide an overview of the fundamentals, solutions, and future opportunities of channel estimation in the RIS assisted wireless communication system. It is noted that a new channel estimation scheme with low pilot overhead will be provided in the second part of this paper.
95 - M.T. Hale , Y. Wardi , H. Jaleel 2016
This paper proposes an algorithmic technique for a class of optimal control problems where it is easy to compute a pointwise minimizer of the Hamiltonian associated with every applied control. The algorithm operates in the space of relaxed controls a nd projects the final result into the space of ordinary controls. It is based on the descent direction from a given relaxed control towards a pointwise minimizer of the Hamiltonian. This direction comprises a form of gradient projection and for some systems, is argued to have computational advantages over direct gradient directions. The algorithm is shown to be applicable to a class of hybrid optimal control problems. The theoretical results, concerning convergence of the algorithm, are corroborated by simulation examples on switched-mode hybrid systems as well as on a problem of balancing transmission- and motion energy in a mobile robotic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا