ﻻ يوجد ملخص باللغة العربية
This paper presents a new array response control scheme named complex-coefficient weight vector orthogonal decomposition ($ textrm{C}^2textrm{-WORD} $) and its application to pattern synthesis. The proposed $ textrm{C}^2textrm{-WORD} $ algorithm is a modified version of the existing WORD approach. We extend WORD by allowing a complex-valued combining coefficient in $ textrm{C}^2textrm{-WORD} $, and find the optimal combining coefficient by maximizing white noise gain (WNG). Our algorithm offers a closed-from expression to precisely control the array response level of a given point starting from an arbitrarily-specified weight vector. In addition, it results less pattern variations on the uncontrolled angles. Elaborate analysis shows that the proposed $ textrm{C}^2textrm{-WORD} $ scheme performs at least as good as the state-of-the-art $textrm{A}^textrm{2}textrm{RC} $ or WORD approach. By applying $ textrm{C}^2textrm{-WORD} $ successively, we present a flexible and effective approach to pattern synthesis. Numerical examples are provided to demonstrate the flexibility and effectiveness of $ textrm{C}^2textrm{-WORD} $ in array response control as well as pattern synthesis.
In this paper, the complex-coefficient weight vector orthogonal decomposition ($ textrm{C}^2textrm{-WORD} $) algorithm proposed in Part I of this two paper series is extended to robust sidelobe control and synthesis with steering vector mismatch. Ass
In this paper, the problem of how to optimally and precisely control array response levels is addressed. By using the concept of the optimal weight vector from the adaptive array theory and adding virtual interferences one by one, the change rule of
Identifying important components or factors in large amounts of noisy data is a key problem in machine learning and data mining. Motivated by a pattern decomposition problem in materials discovery, aimed at discovering new materials for renewable ene
Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an $(m,n,3,lambda_a,1)$-OOSPC wit
Causal decomposition depicts a cause-effect relationship that is not based on the concept of prediction, but based on the phase dependence of time series. It has been validated in both stochastic and deterministic systems and is now anticipated for i