ﻻ يوجد ملخص باللغة العربية
Parity-even cubic vertices of massless bosons of arbitrary spins in three dimensional Minkowski space are classified in the metric-like formulation. As opposed to higher dimensions, there is at most one vertex for any given triple $s_1,s_2,s_3$ in three dimensions. All the vertices with more than three derivatives are of the type $(s,0,0)$, $(s,1,1)$ and $(s,1,0)$ involving scalar and/or Maxwell fields. All other vertices contain two (three) derivatives, when the sum of the spins is even (odd). Minimal coupling to gravity, $(s,s,2)$, has two derivatives and is universal for all spins (equivalence principle holds). Minimal coupling to Maxwell field, $(s,s,1)$, distinguishes spins $sleq 1$ and $sgeq 2$ as it involves one derivative in the former case and three derivatives in the latter case. Some consequences of this classification are discussed.
This work completes the classification of the cubic vertices for arbitrary spin massless bosons in three dimensions started in a previous companion paper by constructing parity-odd vertices. Similarly to the parity-even case, there is a unique parity
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which
It is important to obtain (nearly) massless localized modes for the low-energy four-dimensional effective field theory in the brane-world scenario. We propose a mechanism for bosonic zero modes using the field-dependent kinetic function in the classi
We consider the scattering of massless particles coupled to an abelian gauge field in 2n-dimensional Minkowski spacetime. Weinbergs soft photon theorem is recast as Ward identities for infinitely many new nontrivial symmetries of the massless QED S-m
We describe a five-dimensional analogue of Wigners operator equation ${mathbb W}_a = lambda P_a$, where ${mathbb W}_a $ is the Pauli-Lubanski vector, $P_a$ the energy-momentum operator, and $lambda$ the helicity of a massless particle. Higher dimensional generalisations are also given.