ﻻ يوجد ملخص باللغة العربية
It is important to obtain (nearly) massless localized modes for the low-energy four-dimensional effective field theory in the brane-world scenario. We propose a mechanism for bosonic zero modes using the field-dependent kinetic function in the classical field theory set-up. As a particularly simple case, we consider a domain wall in five dimensions, and show that massless states for scalar (0-form), vector (1-form), and tensor (2-form) fields appear on a domain wall, which may be called topological because of robustness of their existence (insensitive to continuous deformations of parameters). The spin of localized massless bosons is selected by the shape of the nonlinear kinetic function, analogously to the chirality selection of fermion by the well-known Jackiw-Rebbi mechanism. Several explicitly solvable examples are given. We consider not only (anti)BPS domain walls in non-compact extra dimension but also non-BPS domain walls in compact extra dimension.
In this paper we analyze a generalized Jackiw-Rebbi (J-R) model in which a massive fermion is coupled to the kink of the $lambdaphi^4$ model as a prescribed background field. We solve this massive J-R model exactly and analytically and obtain the who
Parity-even cubic vertices of massless bosons of arbitrary spins in three dimensional Minkowski space are classified in the metric-like formulation. As opposed to higher dimensions, there is at most one vertex for any given triple $s_1,s_2,s_3$ in th
We study $SU(N_c)$ gauge theories with Dirac fermions in representations ${cal{R}}$ of nonzero $N$-ality, coupled to axions. These theories have an exact discrete chiral symmetry, which has a mixed t Hooft anomaly with general baryon-color-flavor bac
In this paper we present a complete and exact spectral analysis of the $(1+1)$-dimensional model that Jackiw and Rebbi considered to show that the half-integral fermion numbers are possible due to the presence of an isolated self charge conjugate zer
Taking a two interacting scalar toy model with interaction term $gphichi^2$, we study the production of $chi$-particles coming from the decay of an asymptotic and highly occupied beam of $phi$-particles. We perform a non-perturbative analysis coming