ﻻ يوجد ملخص باللغة العربية
This work completes the classification of the cubic vertices for arbitrary spin massless bosons in three dimensions started in a previous companion paper by constructing parity-odd vertices. Similarly to the parity-even case, there is a unique parity-odd vertex for any given triple $s_1geq s_2geq s_3geq 2$ of massless bosons if the triangle inequalities are satisfied ($s_1<s_2+s_3$) and none otherwise. These vertices involve two (three) derivatives for odd (even) values of the sum $s_1+s_2+s_3$. A non-trivial relation between parity-even and parity-odd vertices is found. Similarly to the parity-even case, the scalar and Maxwell matter can couple to higher spins through current couplings with higher derivatives. We comment on possible lessons for 2d CFT. We also derive both parity-even and parity-odd vertices with Chern-Simons fields and comment on the analogous classification in two dimensions.
Parity-even cubic vertices of massless bosons of arbitrary spins in three dimensional Minkowski space are classified in the metric-like formulation. As opposed to higher dimensions, there is at most one vertex for any given triple $s_1,s_2,s_3$ in th
The Frenet equation governs the extrinsic geometry of a string in three-dimensional ambient space in terms of the curvature and torsion, which are both scalar functions under string reparameterisations. The description engages a local SO(2) gauge sym
Regularization modifies the (odd) behaviour of the Abelian Chern-Simons action under parity. This effect happens for any sensible regularization; in particular, on the lattice. However, as in the chiral symmetry case, there exist generalized parity t
We study renormalization effects in the Abelian Chern-Simons (CS) action. These effects can be non-trivial when the gauge field is coupled to dynamical matter, since the regularization of the UV divergences in the model forces the introduction of a p
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be e