ﻻ يوجد ملخص باللغة العربية
We survey the interactions between foliations and contact structures in dimension three, with an emphasis on sutured manifolds and invariants of sutured contact manifolds. This paper contains two original results: the fact that a closed orientable irreducible 3-manifold M with nonzero second homol-ogy carries a hypertight contact structure and the fact that an orientable, taut, balanced sutured 3-manifold is not a product if and only if it carries a contact structure with nontrivial cylindrical contact homology. The proof of the second statement uses the Handel-Miller theory of end-periodic diffeomorphisms of end-periodic surfaces.
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allow
We introduce a notion of positive pair of contact structures on a 3-manifold which generalizes a previous definition of Eliashberg-Thurston and Mitsumatsu. Such a pair gives rise to a locally integrable plane field $lambda$. We prove that if $lambda$
Let V be a closed 3-manifold. In this paper we prove that the homotopy classes of plane fields on V that contain tight contact structures are in finite number and that, if V is atoroidal, the isotopy classes of tight contact structures are also in finite number.
We study naturality properties of the transverse invariant in knot Floer homology under contact (+1)-surgery. This can be used as a calculational tool for the transverse invariant. As a consequence, we show that the Eliashberg-Chekanov twist knots E_n are not transversely simple for n odd and n>3.
We prove Gray--Moser stability theorems for complementary pairs of forms of constant class defining symplectic pairs, contact-symplectic pairs and contact pairs. We also consider the case of contact-symplectic and contact-contact structures, in which