ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond

128   0   0.0 ( 0 )
 نشر من قبل Dolev Bluvstein
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.

قيم البحث

اقرأ أيضاً

Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut ion with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vac ancy (NV) centers in diamond. We discuss two central challenges of the field: First, the creation of highly-coherent, shallow NV centers less than 10 nm below the surface of single-crystal diamond. Second, the fabrication of tip-like photonic nanostructures that enable efficient fluorescence collection and can be used for scanning probe imaging based on color centers with nanoscale resolution.
87 - T. Fukui , Y. Doi , T. Miyazaki 2014
Nitrogen-vacancy (NV) centers in diamond have attracted significant interest because of their excellent spin and optical characteristics for quantum information and metrology. To take advantage of the characteristics, the precise control of the orien tation of the N-V axis in the lattice is essential. Here we show that the orientation of more than 99 % of the NV centers can be aligned along the [111]-axis by CVD homoepitaxial growth on (111)-substrates. We also discuss about mechanisms of the alignment. Our result enables a fourfold improvement in magnetic-field sensitivity and opens new avenues to the optimum design of NV center devices.
Diamond nitrogen-vacancy (NV) center magnetometry has recently received considerable interest from researchers in the fields of applied physics and sensors. The purpose of this review is to analyze the principle, sensitivity, technical development po tential, and application prospect of the diamond NV center magnetometry. This review briefly introduces the physical characteristics of NV centers, summarizes basic principles of the NV center magnetometer, analyzes the theoretical sensitivity, and discusses the impact of technical noise on the NV center magnetometer. Furthermore, the most critical technologies that affect the performance of the NV center magnetometer are described: diamond sample preparation, microwave manipulation, fluorescence collection, and laser excitation. The theoretical and technical crucial problems, potential solutions and research technical route are discussed. In addition, this review discusses the influence of technical noise under the conventional technical conditions and the actual sensitivity which is determined by the theoretical sensitivity and the technical noise. It is envisaged that the sensitivity that can be achieved through an optimized design is in the order of 10 fT/Hz^1/2. Finally, the roadmap of applications of the diamond NV center magnetometer are presented.
We present an experimental and theoretical study of electronic spin decoherence in ensembles of nitrogen-vacancy (NV) color centers in bulk high-purity diamond at room temperature. Under appropriate conditions, we find ensemble NV spin coherence time s (T_2) comparable to that of single NVs, with T_2 > 600 microseconds for a sample with natural abundance of 13C and paramagnetic impurity density ~10^15 cm^(-3). We also observe a sharp decrease of the coherence time with misalignment of the static magnetic field relative to the NV electronic spin axis, consistent with theoretical modeling of NV coupling to a 13C nuclear spin bath. The long coherence times and increased signal-to-noise provided by room-temperature NV ensembles will aid many applications of NV centers in precision magnetometry and quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا