ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect selective alignment of nitrogen-vacancy center in diamond

87   0   0.0 ( 0 )
 نشر من قبل Norikazu Mizuochi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen-vacancy (NV) centers in diamond have attracted significant interest because of their excellent spin and optical characteristics for quantum information and metrology. To take advantage of the characteristics, the precise control of the orientation of the N-V axis in the lattice is essential. Here we show that the orientation of more than 99 % of the NV centers can be aligned along the [111]-axis by CVD homoepitaxial growth on (111)-substrates. We also discuss about mechanisms of the alignment. Our result enables a fourfold improvement in magnetic-field sensitivity and opens new avenues to the optimum design of NV center devices.

قيم البحث

اقرأ أيضاً

Nitrogen-vacancy (NV) centers in diamond have attracted a great deal of attention because of their possible use in information processing and electromagnetic sensing technologies. We examined theatomistic generation mechanism for the NV defect aligne d in the [111] direction of C(111) substrates. We found that N is incorporated in the C bilayers during the lateral growth arising from a sequence of kink propagation along the step edge down to [-1,-1,2]. As a result, the atomic configuration with the N-atom lone-pair pointing in the [111] direction is formed, which causes preferential alignment of NVs. Our model is consistent with recent experimental data for perfect NV alignment in C(111) substrates.
Synthetic diamond production is key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers that is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor decomposition (MPCVD) diamond growth technique on (111)-oriented substrates that yields perfect alignment ($94pm2%$) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority ($74pm4%$) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications.
The nitrogen-vacancy (NV) center in diamond is a widely-utilized system due to its useful quantum properties. Almost all research focuses on the negative charge state (NV$^-$) and comparatively little is understood about the neutral charge state (NV$ ^0$). This is surprising as the charge state often fluctuates between NV$^0$, and NV$^-$, during measurements. There are potentially under utilized technical applications that could take advantage of NV$^0$, either by improving the performance of NV$^-$, or utilizing NV$^0$, directly. However, the fine-structure of NV$^0$, has not been observed. Here, we rectify this lack of knowledge by performing magnetic circular dichroism (MCD) measurements that quantitatively determine the fine-structure of NV$^0$. The observed behavior is accurately described by spin-Hamiltonians in the ground and excited states with the ground state yielding a spin-orbit coupling of $lambda = 2.24 pm 0.05$ GHz and a orbital $g-$factor of $0.0186 pm 0.0005$. The reasons why this fine-structure has not been previously measured are discussed and strain-broadening is concluded to be the likely reason
The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitro gen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut ion with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا