ترغب بنشر مسار تعليمي؟ اضغط هنا

Diamond Nitrogen-Vacancy Center Magnetometry: Advances and Challenges

139   0   0.0 ( 0 )
 نشر من قبل Jixing Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diamond nitrogen-vacancy (NV) center magnetometry has recently received considerable interest from researchers in the fields of applied physics and sensors. The purpose of this review is to analyze the principle, sensitivity, technical development potential, and application prospect of the diamond NV center magnetometry. This review briefly introduces the physical characteristics of NV centers, summarizes basic principles of the NV center magnetometer, analyzes the theoretical sensitivity, and discusses the impact of technical noise on the NV center magnetometer. Furthermore, the most critical technologies that affect the performance of the NV center magnetometer are described: diamond sample preparation, microwave manipulation, fluorescence collection, and laser excitation. The theoretical and technical crucial problems, potential solutions and research technical route are discussed. In addition, this review discusses the influence of technical noise under the conventional technical conditions and the actual sensitivity which is determined by the theoretical sensitivity and the technical noise. It is envisaged that the sensitivity that can be achieved through an optimized design is in the order of 10 fT/Hz^1/2. Finally, the roadmap of applications of the diamond NV center magnetometer are presented.



قيم البحث

اقرأ أيضاً

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-o rder sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the door to practical applications of NV sensors for ZF magnetic sensing, such as ZF nuclear magnetic resonance, and investigation of magnetic fields in biological systems.
This article proposes a scheme for nitrogen-vacancy (NV) center magnetometry that combines the advantages of lock-in detection and pulse-type scheme. The optimal conditions, optimal sensitivity, and noise-suppression capability of the proposed method are compared with those of the conventional methods from both theoretical and simulation points of view. Through experimental measurements, a four-time improvement in sensitivity and 60-times improvement in minimum resolvable magnetic field (MRMF) was obtained. By using a confocal experiment setup, proposed scheme achieves a sensitivity of 3 nT/Hz1/2 and a MRMF of 100 pT.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut ion with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Shallow nitrogen-vacancy (NV) centers in diamond are promising for nano-magnetometry for they can be placed proximate to targets. To study the intrinsic magnetic properties, zero-field magnetometry is desirable. However, for shallow NV centers under zero field, the strain near diamond surfaces would cause level anti-crossing between the spin states, leading to clock transitions whose frequencies are insensitive to magnetic signals. Furthermore, the charge noises from the surfaces would induce extra spin decoherence and hence reduce the magnetic sensitivity. Here we demonstrate that the relatively strong hyperfine coupling (130 MHz) from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin so that the clock-transition condition is broken and the charge noises are suppressed. The hyperfine bias enhances the dc magnetic sensitivity by a factor of 22 in our setup. With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence due to the nuclear spin bath. In addition, the 130 MHz splitting of the NV center spin transitions allows relaxometry of magnetic noises simultaneously at two well-separated frequencies (~2.870 +/- 0.065 GHz), providing (low-resolution) spectral information of high-frequency noises under zero field. The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy and to improve the frequency resolution in nanoscale magnetic resonance imaging.
Phosphorus-doped diamond is relevant for applications in sensing, optoelectronics and quantum photonics, since the unique optical properties of color centers in diamond can be combined with the n-type conductivity attained by the inclusion of phospho rus. Here, we investigate the photoluminescence signal of the nitrogen-vacancy and silicon-vacancy color centers in phosphorus-doped diamond as a function of temperature starting from ambient conditions up to about 100$^circ$ Celsius, focusing on the zero-phonon line (ZPL). We find that the wavelength and width of the ZPL of the two color centers exhibit a comparable dependence on temperature, despite the strong difference in the photoluminescence spectra. Moreover, the temperature sensitivity of the ZPL of the silicon-vacancy center is not significantly affected by phosphorus-doping, as we infer by comparison with silicon-vacancy centers in electronic-grade single-crystal diamond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا