ﻻ يوجد ملخص باللغة العربية
The information that two random variables $Y$, $Z$ contain about a third random variable $X$ can have aspects of shared information (contained in both $Y$ and $Z$), of complementary information (only available from $(Y,Z)$ together) and of unique information (contained exclusively in either $Y$ or $Z$). Here, we study measures $widetilde{SI}$ of shared, $widetilde{UI}$ unique and $widetilde{CI}$ complementary information introduced by Bertschinger et al., which are motivated from a decision theoretic perspective. We find that in most cases the intuitive rule that more variables contain more information applies, with the exception that $widetilde{SI}$ and $widetilde{CI}$ information are not monotone in the target variable $X$. Additionally, we show that it is not possible to extend the bivariate information decomposition into $widetilde{SI}$, $widetilde{UI}$ and $widetilde{CI}$ to a non-negative decomposition on the partial information lattice of Williams and Beer. Nevertheless, the quantities $widetilde{UI}$, $widetilde{SI}$ and $widetilde{CI}$ have a well-defined interpretation, even in the multivariate setting.
We study the measure of unique information $UI(T:Xsetminus Y)$ defined by Bertschinger et al. (2014) within the framework of information decompositions. We study uniqueness and support of the solutions to the optimization problem underlying the defin
Given a pair of predictor variables and a response variable, how much information do the predictors have about the response, and how is this information distributed between unique, redundant, and synergistic components? Recent work has proposed to qu
The entropy of a pair of random variables is commonly depicted using a Venn diagram. This representation is potentially misleading, however, since the multivariate mutual information can be negative. This paper presents new measures of multivariate i
The authors have recently defined the Renyi information dimension rate $d({X_t})$ of a stationary stochastic process ${X_t,,tinmathbb{Z}}$ as the entropy rate of the uniformly-quantized process divided by minus the logarithm of the quantizer step siz
We offer a new approach to the information decomposition problem in information theory: given a target random variable co-distributed with multiple source variables, how can we decompose the mutual information into a sum of non-negative terms that qu