ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate-Distortion Dimension of Stochastic Processes

76   0   0.0 ( 0 )
 نشر من قبل Shirin Jalali
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rate-distortion dimension (RDD) of an analog stationary process is studied as a measure of complexity that captures the amount of information contained in the process. It is shown that the RDD of a process, defined as two times the asymptotic ratio of its rate-distortion function $R(D)$ to $log {1over D}$ as the distortion $D$ approaches zero, is equal to its information dimension (ID). This generalizes an earlier result by Kawabata and Dembo and provides an operational approach to evaluate the ID of a process, which previously was shown to be closely related to the effective dimension of the underlying process and also to the fundamental limits of compressed sensing. The relation between RDD and ID is illustrated for a piecewise constant process.



قيم البحث

اقرأ أيضاً

In 1959, Renyi proposed the information dimension and the $d$-dimensional entropy to measure the information content of general random variables. This paper proposes a generalization of information dimension to stochastic processes by defining the in formation dimension rate as the entropy rate of the uniformly-quantized stochastic process divided by minus the logarithm of the quantizer step size $1/m$ in the limit as $mtoinfty$. It is demonstrated that the information dimension rate coincides with the rate-distortion dimension, defined as twice the rate-distortion function $R(D)$ of the stochastic process divided by $-log(D)$ in the limit as $Ddownarrow 0$. It is further shown that, among all multivariate stationary processes with a given (matrix-valued) spectral distribution function (SDF), the Gaussian process has the largest information dimension rate, and that the information dimension rate of multivariate stationary Gaussian processes is given by the average rank of the derivative of the SDF. The presented results reveal that the fundamental limits of almost zero-distortion recovery via compressible signal pursuit and almost lossless analog compression are different in general.
The objective of this paper is to further investigate various applications of information Nonanticipative Rate Distortion Function (NRDF) by discussing two working examples, the Binary Symmetric Markov Source with parameter $p$ (BSMS($p$)) with Hammi ng distance distortion, and the multidimensional partially observed Gaussian-Markov source. For the BSMS($p$), we give the solution to the NRDF, and we use it to compute the Rate Loss (RL) of causal codes with respect to noncausal codes. For the multidimensional Gaussian-Markov source, we give the solution to the NRDF, we show its operational meaning via joint source-channel matching over a vector of parallel Gaussian channels, and we compute the RL of causal and zero-delay codes with respect to noncausal codes.
This paper takes a rate-distortion approach to understanding the information-theoretic laws governing cache-aided communications systems. Specifically, we characterise the optimal tradeoffs between the delivery rate, cache capacity and reconstruction distortions for a single-user problem and some special cases of a two-user problem. Our analysis considers discrete memoryless sources, expected- and excess-distortion constraints, and separable and f-separable distortion functions. We also establish a strong converse for separable-distortion functions, and we show that los
Earlier formulations of the DNA assembly problem were all in the context of perfect assembly; i.e., given a set of reads from a long genome sequence, is it possible to perfectly reconstruct the original sequence? In practice, however, it is very ofte n the case that the read data is not sufficiently rich to permit unambiguous reconstruction of the original sequence. While a natural generalization of the perfect assembly formulation to these cases would be to consider a rate-distortion framework, partial assemblies are usually represented in terms of an assembly graph, making the definition of a distortion measure challenging. In this work, we introduce a distortion function for assembly graphs that can be understood as the logarithm of the number of Eulerian cycles in the assembly graph, each of which correspond to a candidate assembly that could have generated the observed reads. We also introduce an algorithm for the construction of an assembly graph and analyze its performance on real genomes.
The water-filling solution for the quadratic rate-distortion function of a stationary Gaussian source is given in terms of its power spectrum. This formula naturally lends itself to a frequency domain test-channel realization. We provide an alternati ve time-domain realization for the rate-distortion function, based on linear prediction. This solution has some interesting implications, including the optimality at all distortion levels of pre/post filtered vector-quantized differential pulse code modulation (DPCM), and a duality relationship with decision-feedback equalization (DFE) for inter-symbol interference (ISI) channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا