ﻻ يوجد ملخص باللغة العربية
Representations of equipped graphs were introduced by Gelfand and Ponomarev; they are similar to representation of quivers, but one does not need to choose an orientation of the graph. In a previous article we have shown that, as in Kacs Theorem for quivers, the dimension vectors of indecomposable representations are exactly the positive roots for the graph. In this article we begin by surveying that work, and then we go on to discuss Auslander-Reiten theory for equipped graphs, and give examples of Auslander-Reiten quivers.
Our main theorem classifies the Auslander-Reiten triangles according to properties of the morphisms involved. As a consequence, we are able to compute the mapping cone of an irreducible morphism. We finish by showing a technique for constructing the
Auslander-Reiten conjecture, which says that an Artin algebra does not have any non-projective generator with vanishing self-extensions in all positive degrees, is shown to be invariant under certain singular equivalences induced by adjoint pairs, wh
For a finitely generated module $ M $ over a commutative Noetherian ring $R$, we settle the Auslander-Reiten conjecture when at least one of ${rm Hom}_R(M,R)$ and ${rm Hom}_R(M,M)$ has finite injective dimension. A number of new characterizations of
Let $mathbf{k}$ be an algebraically closed field, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra, and let $widehat{Lambda}$ be the repetitive algebra of $Lambda$. For the stable category of finitely generated left $widehat{Lambda}$-modules
Given a graph E we define E-algebraic branching systems, show their existence and how they induce representations of the associated Leavitt path algebra. We also give sufficient conditions to guarantee faithfulness of the representations associated t