ترغب بنشر مسار تعليمي؟ اضغط هنا

Auslander-Reiten conjecture and finite injective dimension of Hom

80   0   0.0 ( 0 )
 نشر من قبل Dipankar Ghosh
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a finitely generated module $ M $ over a commutative Noetherian ring $R$, we settle the Auslander-Reiten conjecture when at least one of ${rm Hom}_R(M,R)$ and ${rm Hom}_R(M,M)$ has finite injective dimension. A number of new characterizations of Gorenstein local rings are also obtained in terms of vanishing of certain Ext and finite injective dimension of Hom.



قيم البحث

اقرأ أيضاً

Auslander-Reiten conjecture, which says that an Artin algebra does not have any non-projective generator with vanishing self-extensions in all positive degrees, is shown to be invariant under certain singular equivalences induced by adjoint pairs, wh ich occur often in matrix algebras, recollements and change of rings. Accordingly, several reduction methods are established to study this conjecture.
222 - Jesse Burke 2011
We study rings which have Noetherian cohomology under the action of a ring of cohomology operators. The main result is a criterion for a complex of modules over such a ring to have finite injective dimension. This criterion generalizes, by removing f initeness conditions, and unifies several previous results. In particular we show that for a module over a ring with Noetherian cohomology, if all higher self-extensions of the module vanish then it must have finite injective dimension. Examples of rings with Noetherian cohomology include commutative complete intersection rings and finite dimensional cocommutative Hopf algebras over a field.
Our main theorem classifies the Auslander-Reiten triangles according to properties of the morphisms involved. As a consequence, we are able to compute the mapping cone of an irreducible morphism. We finish by showing a technique for constructing the connecting component of the derived category of any tilted algebra. In particular we obtain a technique for constructing the derived category of any tilted algebra of finite representation type.
Representations of equipped graphs were introduced by Gelfand and Ponomarev; they are similar to representation of quivers, but one does not need to choose an orientation of the graph. In a previous article we have shown that, as in Kacs Theorem for quivers, the dimension vectors of indecomposable representations are exactly the positive roots for the graph. In this article we begin by surveying that work, and then we go on to discuss Auslander-Reiten theory for equipped graphs, and give examples of Auslander-Reiten quivers.
In 1964 L. Auslander conjectured that every crystallographic subgroup of an the affine group is virtually solvable, i.e. contains a solvable subgroup of finite index. D. Fried and W. Goldman proved Auslanders conjecture for n = 3 using cohomological arguments. We prove the Auslander conjecture for n < 7. The proof is based mainly on dynamical arguments. In some cases, we use the cohomological argument which we could avoid but it would significantly lengthen the proof.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا