ﻻ يوجد ملخص باللغة العربية
Given a graph E we define E-algebraic branching systems, show their existence and how they induce representations of the associated Leavitt path algebra. We also give sufficient conditions to guarantee faithfulness of the representations associated to E-algebraic branching systems and to guarantee equivalence of a given representation (or a restriction of it) to a representation arising from an E-algebraic branching system.
A Leavitt labelled path algebra over a commutative unital ring is associated with a labelled space, generalizing Leavitt path algebras associated with graphs and ultragraphs as well as torsion-free commutative algebras generated by idempotents. We sh
We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives information about the injectivity of certain homomorphisms between ${mathbb Z}$-graded algebras. As our main application of this theorem, we obtain isomorph
We show that if $E$ is an arbitrary acyclic graph then the Leavitt path algebra $L_K(E)$ is locally $K$-matricial; that is, $L_K(E)$ is the direct union of subalgebras, each isomorphic to a finite direct sum of finite matrix rings over the field $K$.
We analyze in the context of Leavitt path algebras some graph operations introduced in the context of symbolic dynamics by Williams, Parry and Sullivan, and Franks. We show that these operations induce Morita equivalence of the corresponding Leavitt
Hazrat gave a K-theoretic invariant for Leavitt path algebras as graded algebras. Hazrat conjectured that this invariant classifies Leavitt path algebras up to graded isomorphism, and proved the conjecture in some cases. In this paper, we prove that