ﻻ يوجد ملخص باللغة العربية
It is well known that for ordinary one-dimensional (1D) disordered systems, the Anderson localization length $xi$ diverges as $lambda^m$ in the long wavelength limit ($lambdarightarrow infty$ ) with a universal exponent $m=2$, independent of the type of disorder. Here, we show rigorously that pseudospin-1 systems exhibit non-universal critical behaviors when they are subjected to 1D random potentials. In such systems, we find that $xipropto lambda^m$ with $m$ depending on the type of disorder. For binary disorder, $m=6$ and the fast divergence is due to a super-Klein-tunneling effect (SKTE). When we add additional potential fluctuations to the binary disorder, the critical exponent $m$ crosses over from 6 to 4 as the wavelength increases. Moreover, for disordered superlattices, in which the random potential layers are separated by layers of background medium, the exponent $m$ is further reduced to 2 due to the multiple reflections inside the background layer. To obtain the above results, we developed a new analytic method based on a stack recursion equation. Our analytical results are in excellent agreements with the numerical results obtained by the transfer-matrix method (TMM). For pseudospin-1/2 systems, we find both numerically and analytically that $xiproptolambda^2$ for all types of disorder, same as ordinary 1D disordered systems. Our new analytical method provides a convenient way to obtain easily the critical exponent $m$ for general 1D Anderson localization problems.
Barkhausen noise as found in magnets is studied both with and without the presence of long-range (LR) demagnetizing fields using the non-equilibrium, zero-temperature random-field Ising model. Two distinct subloop behaviors arise and are shown to be
We investigate, analytically near the dimension $d_{uc}=4$ and numerically in $d=3$, the non equilibrium relaxational dynamics of the randomly diluted Ising model at criticality. Using the Exact Renormalization Group Method to one loop, we compute th
We study the critical dynamics of hyper-cubic finite size system in the presence of quenched short-range correlated disorder. By using the random $T_c$ model A for the critical dynamics and the renormalization group method in the vicinity of the uppe
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme.
We present results of conductance-noise experiments on disordered films of crystalline indium oxide with lateral dimensions 2microns to 1mm. The power-spectrum of the noise has the usual 1/f form, and its magnitude increases with inverse sample-volum