ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Universal Critical Behaviors in Disordered Pseudospin-1 Systems

148   0   0.0 ( 0 )
 نشر من قبل Anan Fang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that for ordinary one-dimensional (1D) disordered systems, the Anderson localization length $xi$ diverges as $lambda^m$ in the long wavelength limit ($lambdarightarrow infty$ ) with a universal exponent $m=2$, independent of the type of disorder. Here, we show rigorously that pseudospin-1 systems exhibit non-universal critical behaviors when they are subjected to 1D random potentials. In such systems, we find that $xipropto lambda^m$ with $m$ depending on the type of disorder. For binary disorder, $m=6$ and the fast divergence is due to a super-Klein-tunneling effect (SKTE). When we add additional potential fluctuations to the binary disorder, the critical exponent $m$ crosses over from 6 to 4 as the wavelength increases. Moreover, for disordered superlattices, in which the random potential layers are separated by layers of background medium, the exponent $m$ is further reduced to 2 due to the multiple reflections inside the background layer. To obtain the above results, we developed a new analytic method based on a stack recursion equation. Our analytical results are in excellent agreements with the numerical results obtained by the transfer-matrix method (TMM). For pseudospin-1/2 systems, we find both numerically and analytically that $xiproptolambda^2$ for all types of disorder, same as ordinary 1D disordered systems. Our new analytical method provides a convenient way to obtain easily the critical exponent $m$ for general 1D Anderson localization problems.



قيم البحث

اقرأ أيضاً

Barkhausen noise as found in magnets is studied both with and without the presence of long-range (LR) demagnetizing fields using the non-equilibrium, zero-temperature random-field Ising model. Two distinct subloop behaviors arise and are shown to be in qualitative agreement with experiments on thin film magnets and soft ferromagnets. With LR fields present subloops resemble a self-organized critical system, while their absence results in subloops that reflect the critical point seen in the saturation loop as the system disorder is changed. In the former case, power law distributions of noise are found in subloops, while in the latter case history-induced critical scaling is studied in avalanche size distributions, spin-flip correlation functions, and finite-size scaling of the second moments of the size distributions. Results are presented for simulations of over 10^8 spins.
We investigate, analytically near the dimension $d_{uc}=4$ and numerically in $d=3$, the non equilibrium relaxational dynamics of the randomly diluted Ising model at criticality. Using the Exact Renormalization Group Method to one loop, we compute th e two times $t,t_w$ correlation function and Fluctuation Dissipation Ratio (FDR) for any Fourier mode of the order parameter, of finite wave vector $q$. In the large time separation limit, the FDR is found to reach a non trivial value $X^{infty}$ independently of (small) $q$ and coincide with the FDR associated to the the {it total} magnetization obtained previously. Explicit calculations in real space show that the FDR associated to the {it local} magnetization converges, in the asymptotic limit, to this same value $X^{infty}$. Through a Monte Carlo simulation, we compute the autocorrelation function in three dimensions, for different values of the dilution fraction $p$ at $T_c(p)$. Taking properly into account the corrections to scaling, we find, according to the Renormalization Group predictions, that the autocorrelation exponent $lambda_c$ is independent on $p$. The analysis is complemented by a study of the non equilibrium critical dynamics following a quench from a completely ordered state.
We study the critical dynamics of hyper-cubic finite size system in the presence of quenched short-range correlated disorder. By using the random $T_c$ model A for the critical dynamics and the renormalization group method in the vicinity of the uppe r critical dimension $d=4$, we derive in first order of $epsilon$ the expression for the relaxation time. Its finite-size scaling behavior is discussed both analytically and numerically in details. This was made possible by analyzing carefully the finite--size effects on the Onsager kinetic coefficient. The obtained results are compared to those reported in the literature.
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme. With the method developed here we confirm the value of the roughness exponent $zeta approx 0.2083 epsilon$ in order $epsilon$. Going beyond previous work, we demonstrate that this exponent is universal. In addition, we analyze the generation of higher cumulants in the disorder distribution and the role of temperature as a dangerously irrelevant variable.
78 - V. Orlyanchik , V. I. Kozub , 2006
We present results of conductance-noise experiments on disordered films of crystalline indium oxide with lateral dimensions 2microns to 1mm. The power-spectrum of the noise has the usual 1/f form, and its magnitude increases with inverse sample-volum e down to sample size of 2microns, a behavior consistent with un-correlated fluctuators. A colored second spectrum is only occasionally encountered (in samples smaller than 40microns), and the lack of systematic dependence of non-Gaussianity on sample parameters persisted down to the smallest samples studied (2microns). Moreover, it turns out that the degree of non-Gaussianity exhibits a non-trivial dependence on the bias V used in the measurements; it initially increases with V then, when the bias is deeper into the non-linear transport regime it decreases with V. We describe a model that reproduces the main observed features and argue that such a behavior arises from a non-linear effect inherent to electronic transport in a hopping system and should be observed whether or not the system is glassy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا