ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Gaussian conductance noise in disordered electronic systems due to a non-linear mechanism

79   0   0.0 ( 0 )
 نشر من قبل Zvi Ovadyahu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of conductance-noise experiments on disordered films of crystalline indium oxide with lateral dimensions 2microns to 1mm. The power-spectrum of the noise has the usual 1/f form, and its magnitude increases with inverse sample-volume down to sample size of 2microns, a behavior consistent with un-correlated fluctuators. A colored second spectrum is only occasionally encountered (in samples smaller than 40microns), and the lack of systematic dependence of non-Gaussianity on sample parameters persisted down to the smallest samples studied (2microns). Moreover, it turns out that the degree of non-Gaussianity exhibits a non-trivial dependence on the bias V used in the measurements; it initially increases with V then, when the bias is deeper into the non-linear transport regime it decreases with V. We describe a model that reproduces the main observed features and argue that such a behavior arises from a non-linear effect inherent to electronic transport in a hopping system and should be observed whether or not the system is glassy.

قيم البحث

اقرأ أيضاً

We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme. With the method developed here we confirm the value of the roughness exponent $zeta approx 0.2083 epsilon$ in order $epsilon$. Going beyond previous work, we demonstrate that this exponent is universal. In addition, we analyze the generation of higher cumulants in the disorder distribution and the role of temperature as a dangerously irrelevant variable.
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th e fermions, via inelastic scattering mediated by short-ranged interactions. We calculate the dephasing of weak localization perturbatively through second order in the bath coupling. However, the expansion breaks down at long times, and is not stabilized by including a mean-field decay rate, signaling a failure of the self-consistent Born approximation. We also consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order we find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations and are relevant in two different contexts. First, in the search for precursors to many-body localization in the ergodic phase. Second, our results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the amplification of the triplet-channel interaction strength, and provides an additional mechanism that could contribute to the experimentally observed low-temperature saturation of the dephasing time.
Quasiparticle states in Dirac systems with complex impurity potentials are investigated. It is shown that an impurity site with loss leads to a nontrivial distribution of the local density of states (LDOS). While the real part of defect potential ind uces a well-pronounced peak in the density of states (DOS), the DOS is either weakly enhanced at small frequencies or even forms a peak at the zero frequency for a lattice in the case of non-Hermitian impurity. As for the spatial distribution of the LDOS, it is enhanced in the vicinity of impurity but shows a dip at a defect itself when the potential is sufficiently strong. The results for a two-dimensional hexagonal lattice demonstrate the characteristic trigonal-shaped profile for the LDOS. The latter acquires a double-trigonal pattern in the case of two defects placed at neighboring sites. The effects of non-Hermitian impurities could be tested both in photonic lattices and certain condensed matter setups.
We study heat conduction mediated by longitudinal phonons in one dimensional disordered harmonic chains. Using scaling properties of the phonon density of states and localization in disordered systems, we find non-trivial scaling of the thermal condu ctance with the system size. Our findings are corroborated by extensive numerical analysis. We show that a system with strong disorder, characterized by a `heavy-tailed probability distribution, and with large impedance mismatch between the bath and the system satisfies Fouriers law. We identify a dimensionless scaling parameter, related to the temperature scale and the localization length of the phonons, through which the thermal conductance for different models of disorder and different temperatures follows a universal behavior.
It is well known that for ordinary one-dimensional (1D) disordered systems, the Anderson localization length $xi$ diverges as $lambda^m$ in the long wavelength limit ($lambdarightarrow infty$ ) with a universal exponent $m=2$, independent of the type of disorder. Here, we show rigorously that pseudospin-1 systems exhibit non-universal critical behaviors when they are subjected to 1D random potentials. In such systems, we find that $xipropto lambda^m$ with $m$ depending on the type of disorder. For binary disorder, $m=6$ and the fast divergence is due to a super-Klein-tunneling effect (SKTE). When we add additional potential fluctuations to the binary disorder, the critical exponent $m$ crosses over from 6 to 4 as the wavelength increases. Moreover, for disordered superlattices, in which the random potential layers are separated by layers of background medium, the exponent $m$ is further reduced to 2 due to the multiple reflections inside the background layer. To obtain the above results, we developed a new analytic method based on a stack recursion equation. Our analytical results are in excellent agreements with the numerical results obtained by the transfer-matrix method (TMM). For pseudospin-1/2 systems, we find both numerically and analytically that $xiproptolambda^2$ for all types of disorder, same as ordinary 1D disordered systems. Our new analytical method provides a convenient way to obtain easily the critical exponent $m$ for general 1D Anderson localization problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا