ﻻ يوجد ملخص باللغة العربية
The $mathbb{Z}_2$ topological phase in the quantum dimer model on the Kagome-lattice is a candidate for the description of the low-energy physics of the anti-ferromagnetic Heisenberg model on the same lattice. We study the extend of the topological phase by interpolating between the exactly solvable parent Hamiltonian of the topological phase and an effective low-energy description of the Heisenberg model in terms of a quantum-dimer Hamiltonian. Therefore, we perform a perturbative treatment of the low-energy excitations in the topological phase including free and interacting quasi-particles. We find a phase transition out of the topological phase far from the Heisenberg point. The resulting phase is characterized by a spontaneously broken rotational symmetry and a unit cell involving six sites.
We present a study of a simple model antiferromagnet consisting of a sum of nearest neighbor SO($N$) singlet projectors on the Kagome lattice. Our model shares some features with the popular $S=1/2$ Kagome antiferromagnet but is specifically designed
We construct a short-range resonating valence-bond state (RVB) on the ruby lattice, using projected entangled-pair states (PEPS) with bond dimension $D=3$. By introducing non-local moves to the dimer patterns on the torus, we distinguish four distinc
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the ferm
We describe the finite-size spectrum in the vicinity of the quantum critical point between a $mathbb{Z}_2$ spin liquid and a coplanar antiferromagnet on the torus. We obtain the universal evolution of all low-lying states in an antiferromagnet with g
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, thi