ترغب بنشر مسار تعليمي؟ اضغط هنا

Extend of the $mathbb{Z}_2$-spin liquid phase on the Kagome-lattice

121   0   0.0 ( 0 )
 نشر من قبل Marc Daniel Schulz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marc D. Schulz




اسأل ChatGPT حول البحث

The $mathbb{Z}_2$ topological phase in the quantum dimer model on the Kagome-lattice is a candidate for the description of the low-energy physics of the anti-ferromagnetic Heisenberg model on the same lattice. We study the extend of the topological phase by interpolating between the exactly solvable parent Hamiltonian of the topological phase and an effective low-energy description of the Heisenberg model in terms of a quantum-dimer Hamiltonian. Therefore, we perform a perturbative treatment of the low-energy excitations in the topological phase including free and interacting quasi-particles. We find a phase transition out of the topological phase far from the Heisenberg point. The resulting phase is characterized by a spontaneously broken rotational symmetry and a unit cell involving six sites.



قيم البحث

اقرأ أيضاً

We present a study of a simple model antiferromagnet consisting of a sum of nearest neighbor SO($N$) singlet projectors on the Kagome lattice. Our model shares some features with the popular $S=1/2$ Kagome antiferromagnet but is specifically designed to be free of the sign-problem of quantum Monte Carlo. In our numerical analysis, we find as a function of $N$ a quadrupolar magnetic state and a wide range of a quantum spin liquid. A solvable large-$N$ generalization suggests that the quantum spin liquid in our original model is a gapped ${mathbb Z}_2$ topological phase. Supporting this assertion, a numerical study of the entanglement entropy in the sign free model shows a quantized topological contribution.
We construct a short-range resonating valence-bond state (RVB) on the ruby lattice, using projected entangled-pair states (PEPS) with bond dimension $D=3$. By introducing non-local moves to the dimer patterns on the torus, we distinguish four distinc t sectors in the space of dimer coverings, which is a signature of the topological nature of the RVB wave function. Furthermore, by calculating the reduced density matrix of a bipartition of the RVB state on an infinite cylinder and exploring its entanglement entropy, we confirm the topological nature of the RVB wave function by obtaining non-zero topological contribution, $gamma=-rm{ln} 2$, consistent with that of a $mathbb{Z}_2$ topological quantum spin liquid. We also calculate the ground-state energy of the spin-$frac{1}{2}$ antiferromagnetic Heisenberg model on the ruby lattice and compare it with the RVB energy. Finally, we construct a quantum-dimer model for the ruby lattice and discuss it as a possible parent Hamiltonian for the RVB wave function.
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the ferm ionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.
We describe the finite-size spectrum in the vicinity of the quantum critical point between a $mathbb{Z}_2$ spin liquid and a coplanar antiferromagnet on the torus. We obtain the universal evolution of all low-lying states in an antiferromagnet with g lobal SU(2) spin rotation symmetry, as it moves from the 4-fold topological degeneracy in a gapped $mathbb{Z}_2$ spin liquid to the Anderson tower-of-states in the ordered antiferromagnet. Due to the existence of nontrivial order on either side of this transition, this critical point cannot be described in a conventional Landau-Ginzburg-Wilson framework. Instead it is described by a theory involving fractionalized degrees of freedom known as the O$(4)^ast$ model, whose spectrum is altered in a significant way by its proximity to a topologically ordered phase. We compute the spectrum by relating it to the spectrum of the O$(4)$ Wilson-Fisher fixed point on the torus, modified with a selection rule on the states, and with nontrivial boundary conditions corresponding to topological sectors in the spin liquid. The spectrum of the critical O($2N$) model is calculated directly at $N=infty$, which then allows a reconstruction of the full spectrum of the O($2N)^ast$ model at leading order in 1/N. This spectrum is a unique characteristic of the vicinity of a fractionalized quantum critical point, as well as a universal signature of the existence of proximate $mathbb{Z}_2$ topological and antiferromagnetically-ordered phases, and can be compared with numerical computations on quantum antiferromagnets on two dimensional lattices.
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, thi s model sustains a time-reversal invariant quantum spin liquid phase. With increasing $J_2$ and $J_3$, we find in addition a $q=(0,0)$ N{e}el phase, a chiral spin liquid phase, a valence-bond crystal phase, and a complex non-coplanar magnetically ordered state with spins forming the vertices of a cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time reversal symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid and cuboc1 are distinct, and that these two states are separated by a strong first order phase transition. The transitions from the chiral spin liquid to both the $q=(0,0)$ phase and to time-reversal symmetric spin liquid, however, are consistent with continuous quantum phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا