ﻻ يوجد ملخص باللغة العربية
We use cosmological hydrodynamical simulations of Milky-Way-mass galaxies from the FIRE project to evaluate various strategies for estimating the mass of a galaxys stellar halo from deep, integrated-light images. We find good agreement with integrated-light observations if we mimic observational methods to measure the mass of the stellar halo by selecting regions of an image via projected radius relative to the disk scale length or by their surface density in stellar mass . However, these observational methods systematically underestimate the accreted stellar component, defined in our (and most) simulations as the mass of stars formed outside of the host galaxy, by up to a factor of ten, since the accreted component is centrally concentrated and therefore substantially obscured by the galactic disk. Furthermore, these observational methods introduce spurious dependencies of the estimated accreted stellar component on the stellar mass and size of galaxies that can obscure the trends in accreted stellar mass predicted by cosmological simulations, since we find that in our simulations the size and shape of the central galaxy is not strongly correlated with the assembly history of the accreted stellar halo. This effect persists whether galaxies are viewed edge-on or face-on. We show that metallicity or color information may provide a way to more cleanly delineate in observations the regions dominated by accreted stars. Absent additional data, we caution that estimates of the mass of the accreted stellar component from single-band images alone should be taken as lower limits.
The concentration - virial mass relation is a well-defined trend that reflects the formation of structure in an expanding Universe. Numerical simulations reveal a marked correlation that depends on the collapse time of dark matter halos and their sub
A significant fraction of high redshift star-forming disc galaxies are known to host giant clumps, whose nature and role in galaxy evolution are yet to be understood. In this work we first present a new method based on neural networks to detect clump
We use idealized N-body simulations of equilibrium stellar disks embedded within course-grained dark matter haloes to study the effects of spurious collisional heating on disk structure and kinematics. Collisional heating drives a systematic increase
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular
We present a combined analysis of rest-frame far-UV (1000-2000 A) and rest-frame optical (3600-7000 A) composite spectra formed from very deep observations of a sample of 30 star-forming galaxies with z=2.4+/-0.1, selected to be representative of the