ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling the Stellar and Nebular Spectra of High Redshift Galaxies

111   0   0.0 ( 0 )
 نشر من قبل Charles C. Steidel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. C. Steidel




اسأل ChatGPT حول البحث

We present a combined analysis of rest-frame far-UV (1000-2000 A) and rest-frame optical (3600-7000 A) composite spectra formed from very deep observations of a sample of 30 star-forming galaxies with z=2.4+/-0.1, selected to be representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and the excitation of the observed nebular emission, a self-consistent stellar population synthesis model must simultaneously match the details of the far-UV stellar+nebular continuum and-- when inserted as the excitation source in photoionization models-- account for all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity (Z_*/Z_{sun} ~ 0.1) but relatively high ionized gas-phase oxygen abundances (Z_{neb}/Z_{sun} ~ 0.5), can successfully match all of the observational constraints. We argue that this apparent discrepancy is naturally explained by highly super-solar O/Fe [4-5 times (O/Fe)_{sun}], expected for gas whose enrichment is dominated by the products of core-collapse supernovae. Once the correct ionizing spectrum is identified, photoionization models reproduce all of the observed strong emission line ratios, the direct T_e measurement of O/H, and allow accurate measurement of the gas-phase abundance ratios of N/O and C/O -- both of which are significantly sub-solar but, as for O/Fe, are in remarkable agreement with abundance patterns observed in Galactic thick disk, bulge, and halo stars with similar O/H. High nebular excitation is the rule at high-z (and rare at low-z) because of systematically shorter enrichment timescales (<<1 Gyr): low Fe/O environments produce harder (and longer-lived) stellar EUV spectra at a given O/H, enhanced by dramatic effects on the evolution of massive star binaries.

قيم البحث

اقرأ أيضاً

Observations of $z gtrsim 6$ quasars provide information on the early phases of the most massive black holes (MBHs) and galaxies. Current observations at sub-mm wavelengths trace cold and warm gas, and future observations will extend information to o ther gas phases and the stellar properties. The goal of this study is to examine the gas life cycle in a $z gtrsim 6$ quasar: from accretion from the halo to the galaxy and all the way into the MBH, to how star formation and the MBH itself affect the gas properties. Using a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, we investigate the distribution of the different gas phases in the interstellar medium across cosmic time. We assess the morphological evolution of the quasar host using different tracers (star- or gas-based) and the thermodynamic distribution of the MBH accretion-driven outflows, finding that obscuration in the disc is mainly due to molecular gas, with the atomic component contributing at larger scales and/or above/below the disc plane. Moreover, our results also show that molecular outflows, if present, are more likely the result of gas being lifted near the MBH than production within the wind because of thermal instabilities. Finally, we also discuss how different gas phases can be employed to dynamically constrain the MBH mass, and argue that resolutions below $sim 100$ pc yield unreliable estimates because of the strong contribution of the nuclear stellar component to the potential at larger scales.
We use high-resolution ($approx 10$ pc), zoom-in simulations of a typical (stellar mass $M_starsimeq10^{10}M_odot$) Lyman Break Galaxy (LBG) at $zsimeq 6$ to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range $log (M_star/M_odot) simeq 6-9$ [$log (M_{gas}/M_odot) simeq4.3-7.75$]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG ($< 11.5$ kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies ($rm M_star gtrsim 5times 10^8 M_odot$) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late ($zapprox 7$), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate ($rm >5,M_odot yr ^{-1}$) bursts, which can be detected by JWST while targeting high-$z$ LBGs.
The relation between infrared excess (IRX) and UV spectral slope ($beta_{rm UV}$) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertain ties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX-$beta_{rm UV}$ relation with a sample of $z=2-6$ galaxies ($M_*approx 10^9-10^{12},M_odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX-$beta_{rm UV}$ relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while $beta_{rm UV}$ is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX-$beta_{rm UV}$ relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX-$beta_{rm UV}$ relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simple model that encapsulates most of the found dependencies. Consequently, we argue that the reported `deficit of the infrared/sub-millimetre bright objects at $z>5$ does not necessarily imply a non-standard dust extinction law at those epochs.
We use the GALFORM semi-analytical model to study high density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emissio n-line galaxies (Ly{alpha} and H{alpha} emitters) are used to probe the environments at high redshifts. Radio galaxies are predicted to be hosted by more massive haloes than quasars, and this is imprinted on the amplitude of galaxy overdensities and cross-correlation functions. We find that Ly{alpha} radiative transfer and AGN feedback indirectly affect the clustering on small scales and also the stellar masses, star- formation rates and gas metallicities of galaxies in dense environments. We also investigate the relation between protoclusters associated with radio galaxies and quasars, and their present- day cluster descendants. The progenitors of massive clusters associated with radio galaxies and quasars allow us to determine an average protocluster size in a simple way. Overdensities within the protoclusters are found to correlate with the halo descendant masses. We present scaling relations that can be applied to observational data. By computing projection effects due to the wavelength resolution of modern spectrographs and narrow-band filters we show that the former have enough spectral resolution to map the structure of protoclusters, whereas the latter can be used to measure the clustering around radio galaxies and quasars over larger scales to determine the mass of dark matter haloes hosting them.
The correlation between the peak spectra energy ($E_p$) and the equivalent isotropic energy ($E_{rm iso}$) of long gamma-ray bursts (GRBs), the so-called Amati relation, is often used to constrain the high-redshift Hubble diagram. Assuming Lambda col d dark matter ($Lambda$CDM) cosmology, Wang et al. found a $gtrsim 3sigma$ tension in the data-calibrated Amati coefficients between low- and high-redshift GRB samples. To reduce the impact of fiducial cosmology, we use the Parameterization based on cosmic Age (PAge), an almost model-independent framework to trace the cosmological expansion history. We find that the low- and high-redshift tension in Amati coefficients stays almost the same for the broad class of models covered by PAge, indicating that the cosmological assumption is not the dominant driver of the redshift evolution of GRB luminosity correlation. Next, we analyze the selection effect due to flux limits in observations. We find Amati relation evolves much more significantly across energy scales of $E_{rm iso}$. We debias the GRB data by selectively discarding samples to match low-$z$ and high-$z$ $E_{rm iso}$ distributions. After debiasing, the Amati coefficients agree well between low-$z$ and high-$z$ data groups, whereas the evidence of $E_{rm iso}$-dependence of Amati relation remains to be strong. Thus, the redshift evolution of GRB luminosity correlation can be fully interpreted as a selection bias, and does not imply cosmological evolution of GRBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا