ترغب بنشر مسار تعليمي؟ اضغط هنا

Spurious heating of stellar motions in simulated galactic disks by dark matter halo particles

240   0   0.0 ( 0 )
 نشر من قبل Aaron Ludlow Ph.D.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aaron D. Ludlow




اسأل ChatGPT حول البحث

We use idealized N-body simulations of equilibrium stellar disks embedded within course-grained dark matter haloes to study the effects of spurious collisional heating on disk structure and kinematics. Collisional heating drives a systematic increase in both the vertical and radial velocity dispersions of disk stars, and leads to an artificial increase in the thickness and size of disks; the effects are felt at all galacto-centric radii, and are not limited to the central regions of galaxies. We demonstrate that relaxation is driven primarily by the coarse-grained nature of simulated dark matter haloes, with bulges, stellar haloes and disk stars contributing little to disk heating. The integrated effects of collisional heating are determined primarily by the mass of dark matter particles (or equivalently by the number of particles at fixed halo mass), their local density and characteristic velocity, but are largely insensitive to the masses of stellar particles. This suggests that the effects of numerical relaxation on simulated galaxies can be reduced by increasing the mass resolution of the dark matter in cosmological simulations, with limited benefits from increasing the baryonic (or stellar) mass resolution. We provide a simple empirical model that accurately captures the effects of collisional heating on the vertical and radial velocity dispersions of disk stars, as well as on their scale heights. We use the model to assess the extent to which spurious collisional relaxation may have affected the structure of simulated galaxy disks. For example, we find that dark matter haloes resolved with fewer than $approx 10^6$ particles will collisionally heat stars near the stellar half-mass radius such that their vertical velocity dispersion increases by more than 10 per cent of the halos virial velocity in approximately one Hubble time.



قيم البحث

اقرأ أيضاً

Assuming the dark matter halo of the Milky Way as a non-spherical potential (i.e. triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo, may have left long lasting stellar halo kinematic fossils only due to the shape of the dark matter halo. In contrast with tidal streams, associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups is confirmed, they would be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
143 - Aaron D. Ludlow 2019
The impact of 2-body scattering on the innermost density profiles of dark matter haloes is well established. We use a suite of cosmological simulations and idealised numerical experiments to show that 2-body scattering is exacerbated in situations wh ere there are two species of unequal mass. This is a consequence of mass segregation and reflects a flow of kinetic energy from the more to less massive particles. This has important implications for the interpretation of galaxy sizes in cosmological hydrodynamic simulations, which nearly always model stars with less massive particles than are used for the dark matter. We compare idealised models as well as simulations from the EAGLE project that differ only in the mass resolution of the dark matter component, but keep sub-grid physics, baryonic mass resolution and gravitational force softening fixed. If the dark matter particle mass exceeds the mass of stellar particles, then galaxy sizes--quantified by their projected half-mass radii, ${rm R_{50}}$--increase systematically with time until ${rm R_{50}}$ exceeds a small fraction of the redshift-dependent mean inter-particle separation, $l$ (${rm R_{50}}geq 0.05times l$). Our conclusions should also apply to simulations that adopt different hydrodynamic solvers, subgrid physics or adaptive softening, but in that case may need quantitative revision. Any simulation employing a stellar-to-dark matter particle mass ratio greater than unity will escalate spurious energy transfer from dark matter to baryons on small scales.
Recent studies have presented evidence that the Milky Way global potential may be nonspherical. In this case, the assembling process of the Galaxy may have left long lasting stellar halo kinematic fossils due to the shape of the dark matter halo, pot entially originated by orbital resonances. We further investigate such possibility, considering now potential models further away from $Lambda$CDM halos, like scalar field dark matter halos, MOND, and including several other factors that may mimic the emergence and permanence of kinematic groups, such as, a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of satellites predicted cosmologically. One simulation illustrates that multiple passages of massive satellites with different veloc ities through the disk generate a wobble, having the appearance of rings in face-on projections of the stellar disk. They also produce flares in the disk outer parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions, with small significant associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the coherent vertical oscillations recently detected locally. They can also induce non-zero vertical streaming motions as large as 10-20 km s$^{-1}$, consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring, with modest associated disk heating.
We use cosmological hydrodynamical simulations of Milky-Way-mass galaxies from the FIRE project to evaluate various strategies for estimating the mass of a galaxys stellar halo from deep, integrated-light images. We find good agreement with integrate d-light observations if we mimic observational methods to measure the mass of the stellar halo by selecting regions of an image via projected radius relative to the disk scale length or by their surface density in stellar mass . However, these observational methods systematically underestimate the accreted stellar component, defined in our (and most) simulations as the mass of stars formed outside of the host galaxy, by up to a factor of ten, since the accreted component is centrally concentrated and therefore substantially obscured by the galactic disk. Furthermore, these observational methods introduce spurious dependencies of the estimated accreted stellar component on the stellar mass and size of galaxies that can obscure the trends in accreted stellar mass predicted by cosmological simulations, since we find that in our simulations the size and shape of the central galaxy is not strongly correlated with the assembly history of the accreted stellar halo. This effect persists whether galaxies are viewed edge-on or face-on. We show that metallicity or color information may provide a way to more cleanly delineate in observations the regions dominated by accreted stars. Absent additional data, we caution that estimates of the mass of the accreted stellar component from single-band images alone should be taken as lower limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا