ترغب بنشر مسار تعليمي؟ اضغط هنا

Mutual synchronization of spin-torque oscillators consisting of perpendicularly magnetized free layers and in-plane magnetized pinned layers

110   0   0.0 ( 0 )
 نشر من قبل Tomohiro Taniguchi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau-Lifshitz-Gilbert equation, excitation of in-phase or antiphase synchronization, depending on the ways the oscillators are connected, is found. It is also found from both analytical and numerical calculations that the current-frequency relations for both parallel and series circuits are the same as that for a single spin-torque oscillator.



قيم البحث

اقرأ أيضاً

Synchronization and chaos caused by alternating current and microwave field in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized reference layer is comprehensively studied theoretically. A force d synchronization by the alternating current is observed in numerical simulation over wide ranges of its amplitude and frequency. An analytical theory clarifies that the nonlinear frequency shift, as well as the spin-transfer torque asymmetry, plays a key role in determining locking range and phase difference between the oscillator and current. Chaos caused by the alternating current is identified for a region of large alternating current by evaluating the Lyapunov exponent. Similar results are also obtained for microwave field, although the parameter regions causing chaos are narrower than those by the alternating current.
The oscillation properties of a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are studied based on an analysis of the energy balance between spin torque and damping. The critical value of an external magnetic field applied normal to the film plane is found, below which the controllable range of the oscillation frequency by the current is suppressed. The value of the critical field depends on the magnetic anisotropy, the saturation magnetization, and the spin torque parameter.
We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junct ions patterned into circular nanopillars of diameters ranging from 100 to 300 nm and we use magneto-resistance to determine which rf-current frequencies are efficient in populating the spin wave modes. Micromagnetic calculations indicate that the ultrathin nature of the layer and the large wave vectors used ensure that the spin wave frequencies are predominantly determined by the exchange stiffness, such that the number of modes in a given frequency window can be used to estimate the exchange. For 1 nm layers the experimental data are consistent with an exchange stiffness A= 20 pJ/m, which is slightly lower that its bulk counterpart. The thickness dependence of the exchange stiffness has strong implications for the numerous situations that involve ultrathin films hosting strong magnetization gradients, and the micromagnetic description thereof.
An array of spin torque nano-oscillators (STNOs), coupled by dipolar interaction and arranged on a ring, has been studied numerically and analytically. The phase patterns and locking ranges are extracted as a function of the number $N$, their separat ion, and the current density mismatch between selected subgroups of STNOs. If $Ngeq 6$ for identical current densities through all STNOs, two degenerated modes are identified an in-phase mode (all STNOs have the same phase) and an out-of-phase mode (the phase makes a 2$pi$ turn along the ring). When inducing a current density mismatch between two subgroups, additional phase shifts occur. The locking range (maximum current density mismatch) of the in-phase mode is larger than the one for the out-of-phase mode and depends on the number $N$ of STNOs on the ring as well as on the separation. These results can be used for the development of magnetic devices that are based on STNO arrays.
215 - H. T. Wu , Lei Wang , Tai Min 2021
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re lative phases, in this new synchronized state two STNOs have the same frequency, but their relative phase varies periodically within the common period, resulting in a dynamic waving pattern. The amplitude of the oscillating relative phase depends on the coupling strength of two STNOs, as well as the driven currents. The dancing synchronization turns out to be universal, and can exist in two nonlinear Van der Pol oscillators coupled both reactively and dissipativly. Our findings open doors for new functional STNO-based devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا