ﻻ يوجد ملخص باللغة العربية
An array of spin torque nano-oscillators (STNOs), coupled by dipolar interaction and arranged on a ring, has been studied numerically and analytically. The phase patterns and locking ranges are extracted as a function of the number $N$, their separation, and the current density mismatch between selected subgroups of STNOs. If $Ngeq 6$ for identical current densities through all STNOs, two degenerated modes are identified an in-phase mode (all STNOs have the same phase) and an out-of-phase mode (the phase makes a 2$pi$ turn along the ring). When inducing a current density mismatch between two subgroups, additional phase shifts occur. The locking range (maximum current density mismatch) of the in-phase mode is larger than the one for the out-of-phase mode and depends on the number $N$ of STNOs on the ring as well as on the separation. These results can be used for the development of magnetic devices that are based on STNO arrays.
This paper micromagnetically studies the magnetization dynamics driven by the spin-Hall effect in a Platinum/Permalloy bi-layer. For a certain field and current range, the excitation of a uniform mode, characterized by a power with a spatial distribu
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re
A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau-Lifshitz-Gilbert equation, excitation of in
We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization oc
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal wi