ﻻ يوجد ملخص باللغة العربية
Synchronization and chaos caused by alternating current and microwave field in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized reference layer is comprehensively studied theoretically. A forced synchronization by the alternating current is observed in numerical simulation over wide ranges of its amplitude and frequency. An analytical theory clarifies that the nonlinear frequency shift, as well as the spin-transfer torque asymmetry, plays a key role in determining locking range and phase difference between the oscillator and current. Chaos caused by the alternating current is identified for a region of large alternating current by evaluating the Lyapunov exponent. Similar results are also obtained for microwave field, although the parameter regions causing chaos are narrower than those by the alternating current.
The oscillation properties of a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are studied based on an analysis of the energy balance between spin torque and damping. The critical
A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau-Lifshitz-Gilbert equation, excitation of in
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular
We show that Py, a commonly-used soft ferromagnetic material with weak anisotropy, can become perpendicularly-magnetized while depositing on Ta buffer layer with Hf or Zr insertion layers (ILs) and MgO capping layer. By using two different approaches
Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism