ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Learning of Motion Capture

242   0   0.0 ( 0 )
 نشر من قبل Hsiao-Yu Tung
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current state-of-the-art solutions for motion capture from a single camera are optimization driven: they optimize the parameters of a 3D human model so that its re-projection matches measurements in the video (e.g. person segmentation, optical flow, keypoint detections etc.). Optimization models are susceptible to local minima. This has been the bottleneck that forced using clean green-screen like backgrounds at capture time, manual initialization, or switching to multiple cameras as input resource. In this work, we propose a learning based motion capture model for single camera input. Instead of optimizing mesh and skeleton parameters directly, our model optimizes neural network weights that predict 3D shape and skeleton configurations given a monocular RGB video. Our model is trained using a combination of strong supervision from synthetic data, and self-supervision from differentiable rendering of (a) skeletal keypoints, (b) dense 3D mesh motion, and (c) human-background segmentation, in an end-to-end framework. Empirically we show our model combines the best of both worlds of supervised learning and test-time optimization: supervised learning initializes the model parameters in the right regime, ensuring good pose and surface initialization at test time, without manual effort. Self-supervision by back-propagating through differentiable rendering allows (unsupervised) adaptation of the model to the test data, and offers much tighter fit than a pretrained fixed model. We show that the proposed model improves with experience and converges to low-error solutions where previous optimization methods fail.

قيم البحث

اقرأ أيضاً

Autonomous driving can benefit from motion behavior comprehension when interacting with diverse traffic participants in highly dynamic environments. Recently, there has been a growing interest in estimating class-agnostic motion directly from point c louds. Current motion estimation methods usually require vast amount of annotated training data from self-driving scenes. However, manually labeling point clouds is notoriously difficult, error-prone and time-consuming. In this paper, we seek to answer the research question of whether the abundant unlabeled data collections can be utilized for accurate and efficient motion learning. To this end, we propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision. Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision. Experiments reveal that our approach performs competitively to supervised methods, and achieves the state-of-the-art result when combining our self-supervised model with supervised fine-tuning.
We present MoDist as a novel method to explicitly distill motion information into self-supervised video representations. Compared to previous video representation learning methods that mostly focus on learning motion cues implicitly from RGB inputs, we show that the representation learned with our MoDist method focus more on foreground motion regions and thus generalizes better to downstream tasks. To achieve this, MoDist enriches standard contrastive learning objectives for RGB video clips with a cross-modal learning objective between a Motion pathway and a Visual pathway. We evaluate MoDist on several datasets for both action recognition (UCF101/HMDB51/SSv2) as well as action detection (AVA), and demonstrate state-of-the-art self-supervised performance on all datasets. Furthermore, we show that MoDist representation can be as effective as (in some cases even better than) representations learned with full supervision. Given its simplicity, we hope MoDist could serve as a strong baseline for future research in self-supervised video representation learning.
Motion blurry images challenge many computer vision algorithms, e.g, feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corr esponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.
Contrastive learning methods have significantly narrowed the gap between supervised and unsupervised learning on computer vision tasks. In this paper, we explore their application to remote sensing, where unlabeled data is often abundant but labeled data is scarce. We first show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks. To close the gap, we propose novel training methods that exploit the spatiotemporal structure of remote sensing data. We leverage spatially aligned images over time to construct temporal positive pairs in contrastive learning and geo-location to design pre-text tasks. Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing and other geo-tagged image datasets.
Visual content often contains recurring elements. Text is made up of glyphs from the same font, animations, such as cartoons or video games, are composed of sprites moving around the screen, and natural videos frequently have repeated views of object s. In this paper, we propose a deep learning approach for obtaining a graphically disentangled representation of recurring elements in a completely self-supervised manner. By jointly learning a dictionary of texture patches and training a network that places them onto a canvas, we effectively deconstruct sprite-based content into a sparse, consistent, and interpretable representation that can be easily used in downstream tasks. Our framework offers a promising approach for discovering recurring patterns in image collections without supervision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا