ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Supervised Pillar Motion Learning for Autonomous Driving

162   0   0.0 ( 0 )
 نشر من قبل Chenxu Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous driving can benefit from motion behavior comprehension when interacting with diverse traffic participants in highly dynamic environments. Recently, there has been a growing interest in estimating class-agnostic motion directly from point clouds. Current motion estimation methods usually require vast amount of annotated training data from self-driving scenes. However, manually labeling point clouds is notoriously difficult, error-prone and time-consuming. In this paper, we seek to answer the research question of whether the abundant unlabeled data collections can be utilized for accurate and efficient motion learning. To this end, we propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision. Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision. Experiments reveal that our approach performs competitively to supervised methods, and achieves the state-of-the-art result when combining our self-supervised model with supervised fine-tuning.



قيم البحث

اقرأ أيضاً

We present a simple and flexible object detection framework optimized for autonomous driving. Building on the observation that point clouds in this application are extremely sparse, we propose a practical pillar-based approach to fix the imbalance is sue caused by anchors. In particular, our algorithm incorporates a cylindrical projection into multi-view feature learning, predicts bounding box parameters per pillar rather than per point or per anchor, and includes an aligned pillar-to-point projection module to improve the final prediction. Our anchor-free approach avoids hyperparameter search associated with past methods, simplifying 3D object detection while significantly improving upon state-of-the-art.
105 - Kai Chen , Lanqing Hong , Hang Xu 2021
Autonomous driving has attracted much attention over the years but turns out to be harder than expected, probably due to the difficulty of labeled data collection for model training. Self-supervised learning (SSL), which leverages unlabeled data only for representation learning, might be a promising way to improve model performance. Existing SSL methods, however, usually rely on the single-centric-object guarantee, which may not be applicable for multi-instance datasets such as street scenes. To alleviate this limitation, we raise two issues to solve: (1) how to define positive samples for cross-view consistency and (2) how to measure similarity in multi-instance circumstances. We first adopt an IoU threshold during random cropping to transfer global-inconsistency to local-consistency. Then, we propose two feature alignment methods to enable 2D feature maps for multi-instance similarity measurement. Additionally, we adopt intra-image clustering with self-attention for further mining intra-image similarity and translation-invariance. Experiments show that, when pre-trained on Waymo dataset, our method called Multi-instance Siamese Network (MultiSiam) remarkably improves generalization ability and achieves state-of-the-art transfer performance on autonomous driving benchmarks, including Cityscapes and BDD100K, while existing SSL counterparts like MoCo, MoCo-v2, and BYOL show significant performance drop. By pre-training on SODA10M, a large-scale autonomous driving dataset, MultiSiam exceeds the ImageNet pre-trained MoCo-v2, demonstrating the potential of domain-specific pre-training. Code will be available at https://github.com/KaiChen1998/MultiSiam.
Current state-of-the-art solutions for motion capture from a single camera are optimization driven: they optimize the parameters of a 3D human model so that its re-projection matches measurements in the video (e.g. person segmentation, optical flow, keypoint detections etc.). Optimization models are susceptible to local minima. This has been the bottleneck that forced using clean green-screen like backgrounds at capture time, manual initialization, or switching to multiple cameras as input resource. In this work, we propose a learning based motion capture model for single camera input. Instead of optimizing mesh and skeleton parameters directly, our model optimizes neural network weights that predict 3D shape and skeleton configurations given a monocular RGB video. Our model is trained using a combination of strong supervision from synthetic data, and self-supervision from differentiable rendering of (a) skeletal keypoints, (b) dense 3D mesh motion, and (c) human-background segmentation, in an end-to-end framework. Empirically we show our model combines the best of both worlds of supervised learning and test-time optimization: supervised learning initializes the model parameters in the right regime, ensuring good pose and surface initialization at test time, without manual effort. Self-supervision by back-propagating through differentiable rendering allows (unsupervised) adaptation of the model to the test data, and offers much tighter fit than a pretrained fixed model. We show that the proposed model improves with experience and converges to low-error solutions where previous optimization methods fail.
Fisheye cameras are commonly used in applications like autonomous driving and surveillance to provide a large field of view ($>180^{circ}$). However, they come at the cost of strong non-linear distortions which require more complex algorithms. In thi s paper, we explore Euclidean distance estimation on fisheye cameras for automotive scenes. Obtaining accurate and dense depth supervision is difficult in practice, but self-supervised learning approaches show promising results and could potentially overcome the problem. We present a novel self-supervised scale-aware framework for learning Euclidean distance and ego-motion from raw monocular fisheye videos without applying rectification. While it is possible to perform piece-wise linear approximation of fisheye projection surface and apply standard rectilinear models, it has its own set of issues like re-sampling distortion and discontinuities in transition regions. To encourage further research in this area, we will release our dataset as part of the WoodScape project cite{yogamani2019woodscape}. We further evaluated the proposed algorithm on the KITTI dataset and obtained state-of-the-art results comparable to other self-supervised monocular methods. Qualitative results on an unseen fisheye video demonstrate impressive performance https://youtu.be/Sgq1WzoOmXg.
We present MoDist as a novel method to explicitly distill motion information into self-supervised video representations. Compared to previous video representation learning methods that mostly focus on learning motion cues implicitly from RGB inputs, we show that the representation learned with our MoDist method focus more on foreground motion regions and thus generalizes better to downstream tasks. To achieve this, MoDist enriches standard contrastive learning objectives for RGB video clips with a cross-modal learning objective between a Motion pathway and a Visual pathway. We evaluate MoDist on several datasets for both action recognition (UCF101/HMDB51/SSv2) as well as action detection (AVA), and demonstrate state-of-the-art self-supervised performance on all datasets. Furthermore, we show that MoDist representation can be as effective as (in some cases even better than) representations learned with full supervision. Given its simplicity, we hope MoDist could serve as a strong baseline for future research in self-supervised video representation learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا