ترغب بنشر مسار تعليمي؟ اضغط هنا

MADMAX: A new road to axion dark matter detection

117   0   0.0 ( 0 )
 نشر من قبل Bela Majorovits
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Majorovits




اسأل ChatGPT حول البحث

The axion is a hypothetical low-mass boson predicted by the Peccei-Quinn mechanism solving the strong CP problem. It is naturally also a cold dark matter candidate if its mass is below $sim$,1,meV, thus simultaneously solving two major problems of nature. All existing experimental efforts to detect QCD axions focus on a range of axion masses below $sim$,25$,mu$eV. The mass range above $sim$,40$,mu$eV, predicted by modern models in which the Peccei-Quinn symmetry was restored after inflation, could not be explored so far. The MADMAX project is designed to be sensitive for axions with masses (40--400$),mu$eV. The experimental design is based on the idea of enhanced axion-photon conversion in a system with several layers with alternating dielectric constants. The concept and the proposed design of the MADMAX experiment are discussed. Measurements taken with a prototype test setup are discussed. The prospects for reaching sensitivity enough to cover the parameter space predicted for QCD dark matter axions with mass in the range around 100,$mu$eV is presented.



قيم البحث

اقرأ أيضاً

99 - Stefan Knirck 2017
In contrast to WIMPs, light Dark Matter candidates have increasingly come under the focus of scientific interest. In particular the QCD axion is also able to solve other fundamental problems such as CP-conservation in strong interactions. Galactic ax ions, axion-like particles and hidden photons can be converted to photons at boundaries between materials of different dielectric constants under a strong magnetic field. Combining many such surfaces, one can enhance this conversion significantly using constructive interference and resonances. The proposed MADMAX setup containing 80 high dielectric disks in a SI{10}{tesla} magnetic field would probe the well-motivated mass range of $40$--SI{400}{microelectronvolt}, a range which is at present inaccessible by existing cavity searches. We present the foundations of this approach and its expected sensitivity.
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10--100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m$^2$ area contained in a $10$ Tesla field.
The axion is an intriguing dark matter candidate emerging from the Peccei-Quinn solution to the strong CP problem. Current experimental searches for axion dark matter focus on the axion mass range below 40 $mu$eV. However, if the Peccei-Quinn symmetr y is restored after inflation the observed dark matter density points to an axion mass around 100 $mu$eV. A new project based on axion-photon conversion at the transition between different dielectric media is presented. By using $sim 80$ dielectric discs, the emitted power could be enhanced by a factor of $sim 10^5$ over that from a single mirror (flat dish antenna). Within a 10 T magnetic field, this could be enough to detect $sim 100 mu$eV axions with HEMT linear amplifiers. The design for an experiment is proposed. Results from noise, transmissivity and reflectivity measurements obtained in a prototype setup are presented. The expected sensitivity is shown.
The axion emerges in extensions of the Standard Model that explain the absence of CP violation in the strong interactions. Simultaneously, it can provide naturally the cold dark matter in our universe. Several searches for axions and axion-like parti cles (ALPs) have constrained the corresponding parameter space over the last decades but no unambiguous hints of their existence have been found. The axion mass range below 1 meV remains highly attractive and a well motivated region for dark matter axions. In this White Paper we present a description of a new experiment based on the concept of a dielectric haloscope for the direct search of dark matter axions in the mass range of 40 to 400 $mu$eV. This MAgnetized Disk and Mirror Axion eXperiment (MADMAX) will consist of several parallel dielectric disks, which are placed in a strong magnetic field and with adjustable separations. This setting is expected to allow for an observable emission of axion induced electromagnetic waves at a frequency between 10 to 100 GHz corresponding to the axion mass.
The axion, a consequence of the PQ mechanism, has been considered as the most elegant solution to the strong-CP problem and a compelling candidate for cold dark matter. The Center for Axion and Precision Physics Research (CAPP) of the Institute for B asic Science (IBS) was established on 16 October 2013 with a main objective to launch state of the art axion experiments in South Korea. Relying on the haloscope technique, our strategy is to run several experiments in parallel to explore a wide range of axion masses with sensitivities better than the QCD axion models. We utilize not only the advanced technologies, such as high-field large-volume superconducting (SC) magnets, ultra low temperature dilution refrigerators, and nearly quantum-limited noise amplifiers, but also some unique features solely developed at the Center, including high-quality SC resonant cavities surviving high magnetic fields and efficient cavity geometries to reach high-frequency regions. Our goal is to probe axion dark matter in the frequency range of 1-10 GHz in the first phase and then ultimately up to 25 GHz, even in a scenario where axions constitute only 10% of the local dark matter halo. In this report, the current status and future prospects of the experiments and R&D activities at IBS/CAPP are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا