ﻻ يوجد ملخص باللغة العربية
The axion is an intriguing dark matter candidate emerging from the Peccei-Quinn solution to the strong CP problem. Current experimental searches for axion dark matter focus on the axion mass range below 40 $mu$eV. However, if the Peccei-Quinn symmetry is restored after inflation the observed dark matter density points to an axion mass around 100 $mu$eV. A new project based on axion-photon conversion at the transition between different dielectric media is presented. By using $sim 80$ dielectric discs, the emitted power could be enhanced by a factor of $sim 10^5$ over that from a single mirror (flat dish antenna). Within a 10 T magnetic field, this could be enough to detect $sim 100 mu$eV axions with HEMT linear amplifiers. The design for an experiment is proposed. Results from noise, transmissivity and reflectivity measurements obtained in a prototype setup are presented. The expected sensitivity is shown.
In contrast to WIMPs, light Dark Matter candidates have increasingly come under the focus of scientific interest. In particular the QCD axion is also able to solve other fundamental problems such as CP-conservation in strong interactions. Galactic ax
The axion is a hypothetical low-mass boson predicted by the Peccei-Quinn mechanism solving the strong CP problem. It is naturally also a cold dark matter candidate if its mass is below $sim$,1,meV, thus simultaneously solving two major problems of na
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in
We present the first results of a search for invisible axion dark matter using a multiple-cell cavity haloscope. This cavity concept was proposed to provide a highly efficient approach to high mass regions compared to the conventional multiple-cavity
Axions and axion-like particles are excellent low-mass dark matter candidates. The MADMAX experiment aims to directly detect galactic axions with masses between $40,mu{rm eV}$ and $400,mu{rm eV}$ by using the axion-induced emission of electromagnetic