ﻻ يوجد ملخص باللغة العربية
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10--100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m$^2$ area contained in a $10$ Tesla field.
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, w
The axion emerges in extensions of the Standard Model that explain the absence of CP violation in the strong interactions. Simultaneously, it can provide naturally the cold dark matter in our universe. Several searches for axions and axion-like parti
In contrast to WIMPs, light Dark Matter candidates have increasingly come under the focus of scientific interest. In particular the QCD axion is also able to solve other fundamental problems such as CP-conservation in strong interactions. Galactic ax
Over the past decades, several ideas and technologies have been developed to directly detect WIMP from the galactic halo. All these detection strategies share the common goal of discriminating a WIMP signal from the residual backgrounds. By directly
The axion is a hypothetical low-mass boson predicted by the Peccei-Quinn mechanism solving the strong CP problem. It is naturally also a cold dark matter candidate if its mass is below $sim$,1,meV, thus simultaneously solving two major problems of na