ترغب بنشر مسار تعليمي؟ اضغط هنا

An Initial State with Shear in Peripheral Heavy Ion Collisions

74   0   0.0 ( 0 )
 نشر من قبل Yilong Xie
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we propose a new initial state model for hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted $Lambda$ and $bar{Lambda}$ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws including conservation of a strong initial angular momentum which is present in non-central collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and $[tau, x, y, eta]$ coordinates, and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.



قيم البحث

اقرأ أيضاً

69 - Weijie Du , Peng Yin , Yang Li 2018
We develop an ab initio, non-perturbative, time-dependent Basis Function (tBF) method to solve the nuclear structure and scattering problems in a unified manner. We apply this method to a test problem: the Coulomb excitation of a trapped deuteron by an impinging heavy ion. The states of the deuteron system are obtained by the ab initio nuclear structure calculation implementing a realistic inter-nucleon interaction with a weak external trap to localize the center of mass and to discretize the continuum. The evolution of the internal state of the deuteron system is directly solved using the equation of motion for the scattering. We analyze the excitation mechanism of the deuteron system by investigating its internal transition probabilities and observables as functions of the exposure time and the incident speed. In this investigation, the dynamics of the Coulomb excitation are revealed by the time evolution of the systems internal charge distribution.
We initialize the Quantum Chromodynamic conserved charges of baryon number, strangeness, and electric charge arising from gluon splitting into quark-antiquark pairs for the initial conditions of relativistic heavy-ion collisions. A new Monte Carlo pr ocedure that can sample from a generic energy density profile is presented, called Initial Conserved Charges in Nuclear Geometry (ICCING), based on quark and gluon multiplicities derived within the color glass condensate (CGC) effective theory. We find that while baryon number and electric charge have nearly identical geometries to the energy density profile, the initial strangeness distribution is considerable more eccentric and is produced primarily at the hot spots corresponding to temperatures of $Tgtrsim 400$ MeV for PbPb collisions at $sqrt{s_{NN}}=5.02$ TeV.
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of the fragments is described by the statistical code, GEMINI. Production mechanism and isospin effect of the projectile-like and target-like fragments are analyzed with the combined approach. It is found that the isospin migration from the high-isospin density to the low-density matter takes place in the neutron-rich nuclear reactions, i.e., $^{48}$Ca+$^{208}$Pb, $^{86}$Kr+$^{48}$Ca/$^{208}$Pb/$^{124}$Sn, $^{136}$Xe+$^{208}$Pb, $^{124}$Sn+$^{124}$Sn and $^{136}$Xe+$^{136}$Xe. A hard symmetry energy is available for creating the neutron-rich fragments, in particular in the medium-mass region. The isospin effect of the neutron to proton (n/p) ratio of the complex fragments is reduced once including the secondary decay process. However, a soft symmetry energy enhances the n/p ratio of the light particles, in particular at the kinetic energies above 15 MeV/nucleon.
165 - Meijuan Wang , Lianshou Liu , 2008
In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested. From the simulation of Au + Au collisions at 200 GeV by using the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without string melting, we observe that the correlation patterns change gradually from out-of-plane preferential one to in-plane preferential one when the centrality of collision shifts from central to peripheral, meanwhile the anisotropic collective flow v_2 keeps positive in all cases. This regularity is found to be model and collision energy independent. The physics behind the two opposite trends of correlation patterns, in particular, the presence of out-of-plane correlation patterns at RHIC energy, are discussed.
121 - X. G. Deng , Y. G. Ma 2020
Magnetic field effects on free nucleons are studied in peripheral collisions of $^{197}$Au + $^{197}$Au at energies ranging from 600 to 1500 MeV/nucleon by utilizing an isospin-dependent quantum molecular dynamics (IQMD) model. With the help of angul ar distributions and two-particle angular correlators, the magnetic field effect at an impact parameter of 11 fm is found to be more obvious than at an impact parameter of 8 fm. Moreover, the results suggest that with an increase in the number of peripheral collisions, protons are more easily condensed with the magnetic field. Magnetic field effects are further investigated by the ratio of free neutrons to free protons as functions of a two-particle correlator $C_{2}$, four-particle correlator $C_{4}$ and six-particle correlator $C_{6}$ of angle $phi$, rapidity $Y$ and transverse momentum $p_{T}$. The results show that weak magnetic field effects could be revealed more clearly by these multiple-particle correlators, with the larger number of particle correlators demonstrating a clear signal. The results highlight a new method to search for weak signals using multi-particle correlators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا