ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb Excitation of Deuteron in Peripheral Collisions with a Heavy Ion

70   0   0.0 ( 0 )
 نشر من قبل Peng Yin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an ab initio, non-perturbative, time-dependent Basis Function (tBF) method to solve the nuclear structure and scattering problems in a unified manner. We apply this method to a test problem: the Coulomb excitation of a trapped deuteron by an impinging heavy ion. The states of the deuteron system are obtained by the ab initio nuclear structure calculation implementing a realistic inter-nucleon interaction with a weak external trap to localize the center of mass and to discretize the continuum. The evolution of the internal state of the deuteron system is directly solved using the equation of motion for the scattering. We analyze the excitation mechanism of the deuteron system by investigating its internal transition probabilities and observables as functions of the exposure time and the incident speed. In this investigation, the dynamics of the Coulomb excitation are revealed by the time evolution of the systems internal charge distribution.

قيم البحث

اقرأ أيضاً

The anisotropy of angular distributions of emitted nucleons and light charged particles for the asymmetric reaction system, $^{40}$Ar+$^{197}$Au, at b=6fm and $E_{beam}$=35, 50 and 100MeV/u, are investigated by using the Improved Quantum Molecular Dy namics model. The competition between the symmetry potential and Coulomb potential shows large impacts on the nucleons and light charged particles emission in projectile and target region. As a result of this competition, the angular distribution anisotropy of coalescence invariant Y(n)/Y(p) ratio at forward regions shows sensitivity to the stiffness of symmetry energy as well as the value of Y(n)/Y(p). This observable can be further checked against experimental data to understand the reaction mechanism and to extract information about the symmetry energy at subsaturation densities.
In the present work we propose a new initial state model for hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartes ian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted $Lambda$ and $bar{Lambda}$ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws including conservation of a strong initial angular momentum which is present in non-central collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and $[tau, x, y, eta]$ coordinates, and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of the fragments is described by the statistical code, GEMINI. Production mechanism and isospin effect of the projectile-like and target-like fragments are analyzed with the combined approach. It is found that the isospin migration from the high-isospin density to the low-density matter takes place in the neutron-rich nuclear reactions, i.e., $^{48}$Ca+$^{208}$Pb, $^{86}$Kr+$^{48}$Ca/$^{208}$Pb/$^{124}$Sn, $^{136}$Xe+$^{208}$Pb, $^{124}$Sn+$^{124}$Sn and $^{136}$Xe+$^{136}$Xe. A hard symmetry energy is available for creating the neutron-rich fragments, in particular in the medium-mass region. The isospin effect of the neutron to proton (n/p) ratio of the complex fragments is reduced once including the secondary decay process. However, a soft symmetry energy enhances the n/p ratio of the light particles, in particular at the kinetic energies above 15 MeV/nucleon.
Light charged particles emitted at about 90 deg in the frame of the projectile-like fragment in semi-peripheral collisions of 93Nb+93Nb at 38A MeV give evidence for the simultaneous occurrence of two different production mechanisms. This is demonstra ted by differences in the kinetic energy spectra and in the isotopic composition of the particles. The emission with a softer kinetic energy spectrum and a low N/Z ratio for the hydrogen isotopes is attributed to an evaporation process. The harder emission, with a much higher N/Z ratio, can be attributed to a ``midvelocity process consisting of a non-isotropic emission, on a short time-scale, from the surface of the projectile-like fragment.
121 - X. G. Deng , Y. G. Ma 2020
Magnetic field effects on free nucleons are studied in peripheral collisions of $^{197}$Au + $^{197}$Au at energies ranging from 600 to 1500 MeV/nucleon by utilizing an isospin-dependent quantum molecular dynamics (IQMD) model. With the help of angul ar distributions and two-particle angular correlators, the magnetic field effect at an impact parameter of 11 fm is found to be more obvious than at an impact parameter of 8 fm. Moreover, the results suggest that with an increase in the number of peripheral collisions, protons are more easily condensed with the magnetic field. Magnetic field effects are further investigated by the ratio of free neutrons to free protons as functions of a two-particle correlator $C_{2}$, four-particle correlator $C_{4}$ and six-particle correlator $C_{6}$ of angle $phi$, rapidity $Y$ and transverse momentum $p_{T}$. The results show that weak magnetic field effects could be revealed more clearly by these multiple-particle correlators, with the larger number of particle correlators demonstrating a clear signal. The results highlight a new method to search for weak signals using multi-particle correlators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا