ترغب بنشر مسار تعليمي؟ اضغط هنا

Power-Traffic Coordinated Operation for Bi-Peak Shaving and Bi-Ramp Smoothing -A Hierarchical Data-Driven Approach

123   0   0.0 ( 0 )
 نشر من قبل Huaiguang Jiang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rapid adoption of distributed photovoltaics (PVs) in certain regions, issues such as lower net load valley during the day and more steep ramping of the demand after sunset start to challenge normal operations at utility companies. Urban transportation systems also have high peak congestion periods and steep ramping because of traffic patterns. We propose using the emerging electric vehicles (EVs) and the charing/discharging stations (CDSs) to coordinate the operation between power distribution system (PDS) and the urban transportation system (UTS), therefore, the operation challenges in each system can be mitigated by utilizing the flexibility of the other system. We conducted the simulation and numerical analysis using the IEEE 8,500-bus for the PDS and the Sioux Falls system with about 10,000 cars for the UTS. Two systems are simulated jointly to demonstrate the feasibility and effectiveness of the proposed approach.



قيم البحث

اقرأ أيضاً

We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drop s. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach.
65 - Bing Liu 2020
Ramp metering that uses traffic signals to regulate vehicle flows from the on-ramps has been widely implemented to improve vehicle mobility of the freeway. Previous studies generally update signal timings in real-time based on predefined traffic meas ures collected by point detectors, such as traffic volumes and occupancies. Comparing with point detectors, traffic cameras-which have been increasingly deployed on road networks-could cover larger areas and provide more detailed traffic information. In this work, we propose a deep reinforcement learning (DRL) method to explore the potential of traffic video data in improving the efficiency of ramp metering. The proposed method uses traffic video frames as inputs and learns the optimal control strategies directly from the high-dimensional visual inputs. A real-world case study demonstrates that, in comparison with a state-of-the-practice method, the proposed DRL method results in 1) lower travel times in the mainline, 2) shorter vehicle queues at the on-ramp, and 3) higher traffic flows downstream of the merging area. The results suggest that the proposed method is able to extract useful information from the video data for better ramp metering controls.
78 - Weilin Deng , Daowen Qiu 2016
It is well known that type-1 fuzzy sets (T1 FSs) have limited capabilities to handle some data uncertainties directly, and type-2 fuzzy sets (T2 FSs) can cover the shortcoming of T1 FSs to a certain extent. Fuzzy discrete event systems (FDESs) were p roposed based on T1 FSs theory. Hence, FDES may not be a satisfactory model to characterize some high-uncertainty systems. In this paper, we propose a new model, called as bi-fuzzy discrete event systems (BFDESs), by combining classical DESs theory and T2 FSs theory. Then, we consider the supervisory control problem of BFDESs. The bi-fuzzy controllability theorem and nonblocking bi-fuzzy controllability theorem are demonstrated. Also, an algorithm for checking the bi-fuzzy controllability condition is presented. In addition, two controllable approximations to an uncontrollable language are investigated in detail. An illustrative example is provided to show the applicability and the advantages of BFDESs model.
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load p rediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.
233 - Xinan Wang , Yishen Wang , Di Shi 2019
For the last ten years, utilities have observed on-going transitions on consumers load curves. The previously flat load curves have more frequently turned into duck-shape. This is jointly caused by the increasing household loads as well as the popula rity of rooftop solar photovoltaic. Such load curve transition challenges the operational flexibility of the existing systems and greatly increases the per-MWh energy costs. Peak shaving, in this context, becomes a critical task to demand-side management. Owing to the development of Battery Energy Storage Systems (BESS), numerous peak shaving strategies have been developed and implemented. In this paper, by applying a stacked autoencoder (SAE)-based residential peak load curve forecasting technology, we further lift the peaking shaving capabilities of BESSs to a new level. The proposed strategy takes into account the welfares of both generation-side and demand-side and reaches an optimal balance. A comprehensive case study using smart meter data demonstrates the effectiveness of the proposed method in peak shaving application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا