ﻻ يوجد ملخص باللغة العربية
For the last ten years, utilities have observed on-going transitions on consumers load curves. The previously flat load curves have more frequently turned into duck-shape. This is jointly caused by the increasing household loads as well as the popularity of rooftop solar photovoltaic. Such load curve transition challenges the operational flexibility of the existing systems and greatly increases the per-MWh energy costs. Peak shaving, in this context, becomes a critical task to demand-side management. Owing to the development of Battery Energy Storage Systems (BESS), numerous peak shaving strategies have been developed and implemented. In this paper, by applying a stacked autoencoder (SAE)-based residential peak load curve forecasting technology, we further lift the peaking shaving capabilities of BESSs to a new level. The proposed strategy takes into account the welfares of both generation-side and demand-side and reaches an optimal balance. A comprehensive case study using smart meter data demonstrates the effectiveness of the proposed method in peak shaving application.
With the rapid adoption of distributed photovoltaics (PVs) in certain regions, issues such as lower net load valley during the day and more steep ramping of the demand after sunset start to challenge normal operations at utility companies. Urban tran
Short-term load forecasting is a critical element of power systems energy management systems. In recent years, probabilistic load forecasting (PLF) has gained increased attention for its ability to provide uncertainty information that helps to improv
A Load Balancing Relay Algorithm (LBRA) was proposed to solve the unfair spectrum resource allocation in the traditional mobile MTC relay. In order to obtain reasonable use of spectrum resources, and a balanced MTC devices (MTCDs) distribution, spect
Large-scale deployment of smart meters has made it possible to collect sufficient and high-resolution data of residential electric demand profiles. Clustering analysis of these profiles is important to further analyze and comment on electricity consu
Event detection is the first step in event-based non-intrusive load monitoring (NILM) and it can provide useful transient information to identify appliances. However, existing event detection methods with fixed parameters may fail in case of unpredic