ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of two new HMXBs in the LMC: a $sim$2013 s pulsar and a probable SFXT

97   0   0.0 ( 0 )
 نشر من قبل Georgios Vasilopoulos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period $sim$2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power-law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties we classify both systems as SgXRBs: the 19$^{rm th}$ confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.

قيم البحث

اقرأ أيضاً

The EXTraS project to explore the X-ray Transient and variable Sky searches for coherent signals in the X-ray archival data of XMM-Newton. XMM-Newton performed more than 400 pointed observations in the region of the Large Magellanic Cloud (LMC). We i nspected the results of the EXTraS period search to systematically look for new X-ray pulsators in our neighbour galaxy. We analysed the XMM-Newton observations of two sources from the 3XMM catalogue which show significant signals for coherent pulsations. 3XMM J051259.8-682640 was detected as source with hard X-ray spectrum in two XMM-Newton observations, revealing a periodic modulation of the X-ray flux with 956~s. As optical counterpart we identify an early-type star with Halpha emission. The OGLE I-band light curve exhibits a regular pattern with three brightness dips which mark a period of ~1350 d. The X-ray spectrum of 3XMM J051034.6-670353 is dominated by a super-soft blackbody-like emission component (kT ~ 70 eV) which is modulated by nearly 100% with a period of ~1418 s. From GROND observations we suggest a star with r = 20.9 mag as possible counterpart of the X-ray source. 3XMM J051259.8-682640 is confirmed as a new Be/X-ray binary pulsar in the Large Magellanic Cloud. We discuss the long-term optical period as likely orbital period which would be the longest known from a high-mass X-ray binary. The spectral and temporal properties of the super-soft source 3XMM J051034.6-670353 are very similar to those of RX J0806.3+1527 and RX J1914.4+2456 suggesting that it belongs to the class of double-degenerate polars and is located in our Galaxy rather than in the LMC.
We report on the results of a $sim$40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instru ments. When the X-ray luminosity exceeded $10^{36}$ erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {sigma}), making it the 17$^{th}$ known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law ($Gamma =0.63$) plus a high-temperature black-body (kT $sim$ 2 keV) component. By analysing $sim$12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disk-like component adding cooler light to the spectral energy distribution of the system.
91 - M. J. Coe 2009
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8d binary period.
The Large Magellanic Cloud (LMC) is rich in supernova remnants (SNRs) which can be investigated in detail with radio, optical and X-ray observations. SNR J0453-6829 is an X-ray and radio-bright remnant in the LMC, within which previous studies reveal ed the presence of a pulsar wind nebula (PWN), making it one of the most interesting SNRs in the Local Group of galaxies. We study the emission of SNR J0453-6829 to improve our understanding of its morphology, spectrum, and thus the emission mechanisms in the shell and the PWN of the remnant. We obtained new radio data with the Australia Telescope Compact Array and analysed archival XMM-Newton observations of SNR J0453-6829. We studied the morphology of SNR J0453-6829 from radio, optical and X-ray images and investigated the energy spectra in the different parts of the remnant. Our radio results confirm that this LMC SNR hosts a typical PWN. The prominent central core of the PWN exhibits a radio spectral index alpha_Core of -0.04+/-0.04, while in the rest of the SNR shell the spectral slope is somewhat steeper with alpha_Shell = -0.43+/-0.01. We detect regions with a mean polarisation of P ~ (12+/-4)% at 6 cm and (9+/-2)% at 3 cm. The full remnant is of roughly circular shape with dimensions of (31+/-1) pc x (29+/-1) pc. The spectral analysis of the XMM-Newton EPIC and RGS spectra allowed us to derive physical parameters for the SNR. Somewhat depending on the spectral model, we obtain for the remnant a shock temperature of around 0.2 keV and estimate the dynamical age to 12000-15000 years. Using a Sedov model we further derive an electron density in the X-ray emitting material of 1.56 cm^-3, typical for LMC remnants, a large swept-up mass of 830 solar masses, and an explosion energy of 7.6 x 10^50 erg. These parameters indicate a well evolved SNR with an X-ray spectrum dominated by emission from the swept-up material.
We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as H$alpha$ imaging from the Wide Field Imager on the Max Planck Gesellschaft / European Southern Observatory 2.2m tele scope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods to obtain both radial velocities and fluxes. This provides an updated spatial velocity of $simeq 21.0~pm~4.8$ km s$^{-1}$ for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of $sim 60$ M$_{odot}$ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet inflated nebula. For both wind and jet-powered origins, this would represent one of the first radio detections of such a structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا