ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-frequency observations of SNR J0453-6829 in the LMC; A composite supernova remnant with a pulsar wind nebula

173   0   0.0 ( 0 )
 نشر من قبل Frank Haberl
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Magellanic Cloud (LMC) is rich in supernova remnants (SNRs) which can be investigated in detail with radio, optical and X-ray observations. SNR J0453-6829 is an X-ray and radio-bright remnant in the LMC, within which previous studies revealed the presence of a pulsar wind nebula (PWN), making it one of the most interesting SNRs in the Local Group of galaxies. We study the emission of SNR J0453-6829 to improve our understanding of its morphology, spectrum, and thus the emission mechanisms in the shell and the PWN of the remnant. We obtained new radio data with the Australia Telescope Compact Array and analysed archival XMM-Newton observations of SNR J0453-6829. We studied the morphology of SNR J0453-6829 from radio, optical and X-ray images and investigated the energy spectra in the different parts of the remnant. Our radio results confirm that this LMC SNR hosts a typical PWN. The prominent central core of the PWN exhibits a radio spectral index alpha_Core of -0.04+/-0.04, while in the rest of the SNR shell the spectral slope is somewhat steeper with alpha_Shell = -0.43+/-0.01. We detect regions with a mean polarisation of P ~ (12+/-4)% at 6 cm and (9+/-2)% at 3 cm. The full remnant is of roughly circular shape with dimensions of (31+/-1) pc x (29+/-1) pc. The spectral analysis of the XMM-Newton EPIC and RGS spectra allowed us to derive physical parameters for the SNR. Somewhat depending on the spectral model, we obtain for the remnant a shock temperature of around 0.2 keV and estimate the dynamical age to 12000-15000 years. Using a Sedov model we further derive an electron density in the X-ray emitting material of 1.56 cm^-3, typical for LMC remnants, a large swept-up mass of 830 solar masses, and an explosion energy of 7.6 x 10^50 erg. These parameters indicate a well evolved SNR with an X-ray spectrum dominated by emission from the swept-up material.



قيم البحث

اقرأ أيضاً

We report new Chandra X-ray observations of the shell supernova remnant (SNR) Kes 75 (G29.7-0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across the four epochs, 2000, 2006, 2009, and 2016. We find an expansi on rate between 2000 and 2016 of the NW edge of the PWN of 0.249% +/- 0.023% yr^{-1}, for an expansion age R/(dR/dt) of 400 +/- 40 years and an expansion velocity of about 1000 km s^{-1}. We suggest that the PWN is expanding into an asymmetric nickel bubble in a conventional Type IIP supernova. Some acceleration of the PWN expansion is likely, giving a true age of 480 +/- 50 years. The pulsars birth luminosity was larger than the current value by a factor of 3 -- 8, while the initial period was within a factor of 2 of its current value. We confirm directly that Kes 75 contains the youngest known PWN, and hence youngest known pulsar. The pulsar PSR J1846-0258 has a spindown-inferred magnetic field of 5 x 10^{13} G; in 2006 it emitted five magnetar-like short X-ray bursts, but its spindown luminosity has not changed significantly. However, the flux of the PWN has decreased by about 10% between 2009 and 2016, almost entirely in the northern half. A bright knot has declined by 30% since 2006. During this time, the photon indices of the power-law models did not change. This flux change is too rapid to be due to normal PWN evolution in one-zone models.
242 - Joseph D. Gelfand 2009
A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In t his paper, we present a new semi-analytic model for the evolution of such a pulsar wind nebula which couples the dynamical and radiative evolution of the pulsar wind nebulae, traces the evolution of the pulsar wind nebulae throughout the lifetime of the supernova remnant produced by the progenitor explosion, and predicts both the dynamical and radiative properties of the pulsar wind nebula during this period. We also discuss the expected evolution for a particular set of these parameters, and show it reproduces many puzzling features of known young and old pulsar wind nebulae. The model also predicts spectral features during different phases of its evolution detectable with new radio and gamma-ray observing facilities. Finally, this model has implications for determining if pulsar wind nebulae can explain the recent measurements of the cosmic ray positron fraction by PAMELA and the cosmic ray lepton spectrum by ATIC and HESS.
We present observations of the pulsar-wind nebula (PWN) region ofSNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array (ATCA) at 3 cm. For 1.44 9 - 233.50 GHz we obtain a synchrotron spectrum $F_{ u} propto u^{-alpha_{ u}}$, with the spectral index $alpha_{ u} = 0.17pm{0.02}$. To conclude how this joins the synchrotron spectrum at higher frequencies we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $alpha_{ u} = 0.87^{+0.08}_{-0.10}$. There is room for $2.5times10^{-3}$ solar masses of dust with temperature $sim 55$ K if there are dual breaks in the synchrotron spectrum, one around $sim 9times10^{10}$ Hz, and another at $sim 2times10^{13}$ Hz. The spectral index then changes at $sim 9times10^{10}$ Hz from $alpha_{ u} = 0.14pm0.07$ in the radio, to $alpha_{ u} = 0.35^{-0.07}_{+0.05}$ in the millimetre to far-IR range. The ACA Band 6 data marginally resolves the PWN. In particular, the strong emission 1.5 south-west of the pulsar, seen at other wavelengths, and resolved in the 3-cm data with its 0.8 spatial resolution, is also strong in the millimeter range. The ACA data clearly reveal the supernova remnant shell 20-35 arcsec west of the pulsar, and for the shell we derive $alpha_{ u} = 0.64pm{0.05}$ for the range $8.6-145$~GHz.
We present a new multi-wavelength study of supernova remnant (SNR) B0513-692 in the Large Magellanic Cloud (LMC). The remnant also has a strong, superposed, essentially unresolved, but unrelated radio source at its north-western edge, J051324-691049. This is identified as a likely compact HII region based on related optical imaging and spectroscopy. We use the Australia Telescope Compact Array (ATCA) at 4790 and 8640 MHz to determine the large scale morphology, spectral index and polarization characteristics of B0513-692 for the first time. We detect a strongly polarized region (49%) in the remnants southern edge. Interestingly we also detect a small (~40 arcsec) moderately bright, but distinct optical, circular shell in our Halpha imagery which is adjacent to the compact HII region and just within the borders of the NE edge of B0513-692. We suggest this is a separate new SNR candidate based on its apparently distinct character in terms of optical morphology in 3 imaged emission lines and indicative SNR optical spectroscopy (including enhanced optical [SII] emission relative to Halpha).
136 - B. M. Gaensler MIT 2001
We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) within the supernova remnant G0.9+0.1. At Chandras high resolution, the PWN has a clear axial symmetry; a faint X-ray point source lying along the symmetry axi s possibly corresponds to the pulsar itself. We argue that the nebular morphology can be explained in terms of a torus of emission in the pulsars equatorial plane and a jet directed along the pulsar spin axis, as is seen in the X-ray nebulae powered by other young pulsars. A bright clump of emission within the PWN breaks the axisymmetry and may correspond to an intermediate-latitude feature in the pulsar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا