ترغب بنشر مسار تعليمي؟ اضغط هنا

LMC X-1: A New Spectral Analysis of the O-star in the binary and surrounding nebula

203   0   0.0 ( 0 )
 نشر من قبل Elaina Hyde
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as H$alpha$ imaging from the Wide Field Imager on the Max Planck Gesellschaft / European Southern Observatory 2.2m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods to obtain both radial velocities and fluxes. This provides an updated spatial velocity of $simeq 21.0~pm~4.8$ km s$^{-1}$ for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of $sim 60$ M$_{odot}$ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet inflated nebula. For both wind and jet-powered origins, this would represent one of the first radio detections of such a structure.



قيم البحث

اقرأ أيضاً

131 - John Meaburn 2010
The unique Honeycomb nebula, most likely a peculiar supernova remnant, lies in 30 Doradus in the Large Magellanic Cloud. Due to its proximity to SN1987A, it has been serendipitously and intentionally observed at many wavelengths. Here, an optical spe ctral analysis of forbidden line ratios is performed in order to compare the Honeycomb high-speed gas with supernova remnants in the Galaxy and the LMC, with galactic Wolf-Rayet nebulae and with the optical line emission from the interaction zone of the SS433 microquasar and W50 supernova remnant system. An empirical spatiokinematic model of the images and spectra for the Honeycomb reveals that its striking appearance is most likely due to a fortuitous viewing angle. The Honeycomb nebula is more extended in soft X-ray emission and could in fact be a small part of the edge of a giant LMC shell revealed for the first time in this short wavelength domain. It is also suggested that a previously unnoticed region of optical emission may in fact be an extension of the Honeycomb around the edge of this giant shell. A secondary supernova explosion in the edge of a giant shell is considered for the creation of the Honeycomb nebula. A microquasar origin of the Honeycomb nebula as opposed to a simple supernova origin is also evaluated.
We present high resolution ($sim$300 au) Atacama Large Millimeter/submillimeter Array (ALMA) observations of the massive young stellar object G11.92-0.61 MM 1. We resolve the immediate circumstellar environment of MM 1 in 1.3 mm continuum emission an d CH$_{3}$CN emission for the first time. The object divides into two main sources - MM 1a, which is the source of a bipolar molecular outflow, and MM 1b, located 0.57 (1920 au) to the South-East. The main component of MM 1a is an elongated continuum structure, perpendicular to the bipolar outflow, with a size of $0.141 times 0.050$ ($480times170$ au). The gas kinematics toward MM 1a probed via CH$_{3}$CN trace a variety of scales. The lower energy $J=12-11$ $K=3$ line traces extended, rotating gas within the outflow cavity, while the $v$8=1 line shows a clearly-resolved Keplerian rotation signature. Analysis of the gas kinematics and dust emission shows that the total enclosed mass in MM 1a is $40pm5$ M$_{odot}$ (where between 2.2-5.8 M$_{odot}$ is attributed to the disk), while MM 1b is $<0.6$ M$_{odot}$. The extreme mass ratio and orbital properties of MM 1a and MM 1b suggest that MM 1b is one of the first observed examples of the formation of a binary star via disk fragmentation around a massive young (proto)star.
We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that EXO 1745-248 is an atoll source, and report the discovery of a ~ 0.45 Hz low-frequency quasi-periodic oscillation and ~ 10 Hz peaked noises. If it is an atoll, this source is unusual because (1) instead of a `C-like curve, it traced a clear overall clockwise hysteresis curve in each of the colour-colour diagram and the hardness-intensity diagram; and (2) the source took at least 2.5 months to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. The shape of the hysteresis track was intermediate between the characteristic `q-like curves of several black hole systems and `C-like curves of atolls, implying that EXO 1745-248 is an important source for the unification of the black hole and neutron star accretion processes.
In this work, at first we present a model of studying astrophysical flows of binary systems and microquasars based on the laws of relativistic magnetohydrodynamics. Then, by solving the time independent transfer equation, we estimate the primary and secondary particle distributions within the hadronic astrophysical jets as well as the emissivities of high energy neutrinos and $gamma$-rays. One of our main goals is, by taking into consideration the various energy-losses of particles into the hadronic jets, to determine through the transport equation the respective particle distributions focusing on relativistic hadronic jets of binary systems. As a concrete example we examine the extragalactic binary system LMC X-1 located in the Large Magellanic Cloud, a satellite galaxy of our Milky Way Galaxy.
We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white-dwarf with an M-type main-s equence companion. A good fit to the observations was found with a companion that follows expected mass-temperature-radius relationships for low-mass stars, indicating that despite being highly irradiated it is consistent with not being significantly hotter or larger than a typical star of the same mass. Previous modelling indicated that ETHOS 1 may comprise the first case where the orbital plane of the central binary does not lie perpendicular to the nebular symmetry axis, at odds with the expectation that the common envelope is ejected in the orbital plane. We find no evidence for such a discrepancy, deriving a binary inclination in agreement with that of the nebula as determined by spatio-kinematic modelling. This makes ETHOS 1 the ninth post-common-envelope planetary nebula in which the binary orbital and nebular symmetry axes have been shown to be aligned, with as yet no known counter-examples. The probability of finding such a correlation by chance is now less than 0.00002%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا