ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized positron production at MeV electron accelerators

64   0   0.0 ( 0 )
 نشر من قبل Eric Voutier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Voutier




اسأل ChatGPT حول البحث

The Polarized Electrons for Polarized Positrons (PEPPo) experiment has demonstrated the efficient transfer of polarization from electrons to positrons produced by the bremsstrahlung radiation of a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% has been measured for an initial electron beam momentum of 8.19 MeV/$c$, limited only by the electron beam polarization. Combined with the high intensity and high polarization performances of polarized electron sources, this technique extends efficient polarized positron capabilities from GeV to MeV electron accelerators. This presentation reviews the PEPPo proof-of-principle experiment and addresses the perspectives for future applications.


قيم البحث

اقرأ أيضاً

The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the pol arized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
Sub-micron defects represent a well-known fundamental problem in manufacturing since they can significantly affect performance and lifetime of virtually any high-value component. Positron annihilation lifetime spectroscopy is arguably the only establ ished method capable of detecting defects down to the sub-nanometer scale but, to date, it only works for surface studies, and with limited resolution. Here, we experimentally and numerically show that laser-driven systems can overcome these well-known limitations, by generating ultra-short positron beams with a kinetic energy tuneable from 500 keV up to 2 MeV and a number of positrons per shot in a 50 keV energy slice color{black} of the order of $10^3$. Numerical simulations of the expected performance of a typical mJ-scale kHz laser demonstrate the possibility of generating MeV-scale narrow-band and ultra-short positron beams with a flux exceeding $10^5$ positrons/s, of interest for fast volumetric scanning of materials at high resolution.
The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last deca des. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Julich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and $^{3}$He ions are now being built in Julich. Proof-of-principle measurements at the (multi-)PW laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi gate, employing fully polarization resolved Monte Carlo simulations, the correlated photon and electron (positron) polarization effects in multiphoton Breit-Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We showed that the polarization of e^-e^+ pairs is degraded by 35%, when the polarization of the intermediate photon is resolved, accompanied with an approximately 13% decrease of the pair yield. Moreover, the polarization direction of energetic positrons in small angle region is reversed, which originates from the pair production of hard photons with polarization parallel with electric field.
112 - B. Hidding , O. Karger , G. Wittig 2014
Synchronized, independently tunable and focused $mu$J-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the posi tion of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا