ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Performance of the Spin Asymmetries of the Nucleon Experiment

69   0   0.0 ( 0 )
 نشر من قبل James Maxwell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer $2.5 < Q^2< 6.5$ GeV$^2$ and Bjorken scaling $0.3<x<0.8$ from initial beam energies of 4.7 and 5.9 GeV. Employing a polarized proton target whose magnetic field direction could be rotated with respect to the incident electron beam, both parallel and near perpendicular spin asymmetries were measured, allowing model-independent access to transverse polarization observables $A_1$, $A_2$, $g_1$, $g_2$ and moment $d_2$ of the proton. This document summarizes the operation and performance of the polarized target, polarized electron beam, and novel detector systems used during the course of the experiment, and describes analysis techniques utilized to access the physics observables of interest.

قيم البحث

اقرأ أيضاً

We report on the design, construction, commissioning, and performance of a threshold gas v{C}erenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geo metry detector package known as the Big Electron Telescope Array, this v{C}erenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetries $A_{parallel}$ and $A_{perp}$ of a polarized electron beam impinging on a polarized ammonia target. The v{C}erenkov counters performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the v{C}erenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from $pi^0$ decays.
269 - N. J. Ayres 2021
We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is given of the experimental method and setup, the sensitivity requirements for the apparatus are derived, and its technical design is described.
This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodio des. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config uration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.
A spiral fiber tracker (SFT) has been designed and produced for the J-PARC E36 experiment as an element of the tracking system for conducting a high-resolution momentum measurement of charge particles from kaon decays. A novel technique to wind the p re-made fiber ribbons spirally was employed for the configuration with four detector layers made of 1 mm diameter plastic scintillating fibers. Good position alignment and sufficiently high detection efficiency for charged particles with minimum ionizing energy were confirmed in cosmic ray test. The tracker was successfully used in the E36 experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا