ﻻ يوجد ملخص باللغة العربية
We report on the design, construction, commissioning, and performance of a threshold gas v{C}erenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this v{C}erenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetries $A_{parallel}$ and $A_{perp}$ of a polarized electron beam impinging on a polarized ammonia target. The v{C}erenkov counters performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the v{C}erenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from $pi^0$ decays.
The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. A novel detector array observed scattere
The missing mass spectroscopy of $Xi^{-}$ hypernuclei with the $(K^{-},K^{+})$ reaction is planned to be performed at the J-PARC K1.8 beam line by using a new magnetic spectrometer, Strangeness $-2$ Spectrometer (S-2S). A $v{C}$cerenkov detector with
The v-Angra experiment aims to estimate the flux of antineutrino particles coming out from the Angra II nuclear reactor. Such flux is proportional to the thermal power released in the fission process and therefore can be used to infer the quantity of
Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability o
Generalized mesonic Super-v{C}erenkov Radiations (Sv{C}R) are investigated. The energy behavior of the pionic refractive index in the low energy pionic SCR-sector is presented. We estimated that the true coherent SCR-pion emission is possible mainly