ﻻ يوجد ملخص باللغة العربية
This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.
The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muo
Muon beam monitoring is indispensable for indirectly monitoring accelerator-produced neutrino beams in real time. Though Si photodiodes and ionization chambers have been successfully used as muon monitors at the T2K experiment, sensors that are more
The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {theta}_{13} by observing { u}_e appearance in a { u}_{mu} beam. It also aims to make a precision measureme
In the T2K near neutrino detectors, about 60 000 Hamamatsu Multi-Pixel Photon Counters (MPPCs) will be used. The mass production of MPPC has started in February 2008.In order to perform quality assurance and to characterize each device, we have devel
The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to moni