ﻻ يوجد ملخص باللغة العربية
Given a branching random walk on a graph, we consider two kinds of truncations: by inhibiting the reproduction outside a subset of vertices and by allowing at most $m$ particles per site. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st
We study the branching random walk on weighted graphs; site-breeding and edge-breeding branching random walks on graphs are seen as particular cases. We describe the strong critical value in terms of a geometrical parameter of the graph. We character
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
We study the limiting occupation density process for a large number of critical and driftless branching random walks. We show that the rescaled occupation densities of $lfloor sNrfloor$ branching random walks, viewed as a function-valued, increasing