ترغب بنشر مسار تعليمي؟ اضغط هنا

The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

65   0   0.0 ( 0 )
 نشر من قبل Sergey Pilipenko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high brightness temperatures, $T_mathrm{b}gtrsim 10^{13}$ K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240,000 km we find two characteristic angular scales in the quasar core, about 100 $mu$as and 10 $mu$as. Some indications of scattering substructure are found. Very high brightness temperatures, $T_mathrm{b}geq 10^{13}$ K, are estimated at 4.8 GHz and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.



قيم البحث

اقرأ أيضاً

183 - Y. Y. Kovalev 2016
Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of $10^{11.5}$ K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of $10^{13}$ K are inaccessibl e using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 $mu$as (2.7 light months) and brightness temperature in excess of $10^{13}$ K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-ra ys for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C273 on interferometric baselines up to 171,000 km suggest brightne ss temperatures exceeding expected limits from the inverse-Compton catastrophe by two orders of magnitude. We show that at 18 cm, these estimates most probably arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7*10^12 K, which is consistent with expected theoretical limits, but which is ~15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 cm, the substructure does not affect the extremely high inferred brightness temperatures, in excess of 10^13 K. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.
The RadioAstron space radio telescope provides a unique opportunity to study the extreme brightness temperatures ($mathrm{T_B }$) in AGNs with unprecedented long baselines of up to 28 Earth diameters. Since interstellar scintillation (ISS) may affect the visibilities observed with space VLBI (sVLBI), a complementary ground based flux density monitoring of the RadioAstron targets, which is performed near in time to the VLBI observation, could be beneficial. The combination/comparison with the sVLBI data can help to unravel the relative influence of source intrinsic and ISS induced effects, which in the end may alter the conclusions on the $mathrm{T_B }$ measurements from sVLBI. Since 2013, a dedicated monitoring program has been ongoing to observe the ISS of RadioAstron AGN targets with a number of radio telescopes. Here we briefly introduce the program and present results from the statistical analysis of the Effelsberg monitoring data. We discuss the possible effects of ISS on $mathrm{T_B }$ measurements for the RadioAstron target B0529+483 as a case study.
In this paper we propose a new mechanism describing the initial spike of giant flares in the framework of the starquake model. We investigate the evolution of a plasma on a closed magnetic flux tube in the magnetosphere of a magnetar in the case of a sudden energy release and discuss the relationship with observations of giant flares. We perform one-dimensional numerical simulations of the relativistic magnetohydrodynamics in Schwarzschild geometry. We assume energy is injected at the footpoints of the loop by a hot star surface containing random perturbations of the transverse velocity. Alfven waves are generated and propagate upward, accompanying very hot plasma that is also continuously heated by nonlinearly generated compressive waves. We find that the front edges of the fireball regions collide at the top of the tube with their symmetrically launched counterparts. This collision results in an energy release which can describe the light curve of initial spikes of giant flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا