ﻻ يوجد ملخص باللغة العربية
In this paper we propose a new mechanism describing the initial spike of giant flares in the framework of the starquake model. We investigate the evolution of a plasma on a closed magnetic flux tube in the magnetosphere of a magnetar in the case of a sudden energy release and discuss the relationship with observations of giant flares. We perform one-dimensional numerical simulations of the relativistic magnetohydrodynamics in Schwarzschild geometry. We assume energy is injected at the footpoints of the loop by a hot star surface containing random perturbations of the transverse velocity. Alfven waves are generated and propagate upward, accompanying very hot plasma that is also continuously heated by nonlinearly generated compressive waves. We find that the front edges of the fireball regions collide at the top of the tube with their symmetrically launched counterparts. This collision results in an energy release which can describe the light curve of initial spikes of giant flares.
Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the su
We present three-dimensional force-free electrodynamics simulations of magnetar magnetospheres that demonstrate the instability of certain degenerate, high energy equilibrium solutions of the Grad-Shafranov equation. This result indicates the existen
Magnetar giant flares may excite vibrational modes of neutron stars. Here we compute an estimate of initial post-flare amplitudes of both the torsional modes in the magnetars crust and of the global f-modes. We show that while the torsional crustal m
We develop a model for the radio afterglow of the giant flare of SGR 1806-20 arising due to the interaction of magnetically-dominated cloud, an analogue of Solar Coronal Mass Ejections (CMEs), with the interstellar medium (ISM). The CME is modeled as
We consider the motion of charged particles in the vacuum magnetospheres of rotating neutron stars with a strong surface magnetic field, B>10^(12) G. The electrons and positrons falling into the magnetosphere or produced in it are shown to be capture